BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 2505907)

  • 1. The carbonate environment in bone mineral: a resolution-enhanced Fourier Transform Infrared Spectroscopy Study.
    Rey C; Collins B; Goehl T; Dickson IR; Glimcher MJ
    Calcif Tissue Int; 1989 Sep; 45(3):157-64. PubMed ID: 2505907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fourier transform infrared spectroscopic study of the carbonate ions in bone mineral during aging.
    Rey C; Renugopalakrishnan V; Collins B; Glimcher MJ
    Calcif Tissue Int; 1991 Oct; 49(4):251-8. PubMed ID: 1760769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resolution-enhanced Fourier transform infrared spectroscopy study of the environment of phosphate ions in the early deposits of a solid phase of calcium-phosphate in bone and enamel, and their evolution with age. I: Investigations in the upsilon 4 PO4 domain.
    Rey C; Shimizu M; Collins B; Glimcher MJ
    Calcif Tissue Int; 1990 Jun; 46(6):384-94. PubMed ID: 2364326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbonate ions in apatites: infrared investigations in the upsilon 4 CO3 domain.
    el Feki H; Rey C; Vignoles M
    Calcif Tissue Int; 1991 Oct; 49(4):269-74. PubMed ID: 1760771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A resolution-enhanced Fourier transform infrared spectroscopic study of the environment of the CO3(2-) ion in the mineral phase of enamel during its formation and maturation.
    Rey C; Renugopalakrishnan V; Shimizu M; Collins B; Glimcher MJ
    Calcif Tissue Int; 1991 Oct; 49(4):259-68. PubMed ID: 1760770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of fluoride treatment on bone mineral crystals in the rat.
    Grynpas MD; Rey C
    Bone; 1992; 13(6):423-9. PubMed ID: 1476820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resolution-enhanced Fourier transform infrared spectroscopy study of the environment of phosphate ion in the early deposits of a solid phase of calcium phosphate in bone and enamel and their evolution with age: 2. Investigations in the nu3PO4 domain.
    Rey C; Shimizu M; Collins B; Glimcher MJ
    Calcif Tissue Int; 1991 Dec; 49(6):383-8. PubMed ID: 1818762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ analysis of mineral content and crystallinity in bone using infrared micro-spectroscopy of the nu(4) PO(4)(3-) vibration.
    Miller LM; Vairavamurthy V; Chance MR; Mendelsohn R; Paschalis EP; Betts F; Boskey AL
    Biochim Biophys Acta; 2001 Jul; 1527(1-2):11-9. PubMed ID: 11420138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Thermal stability of carbonates in bone tissue].
    Legros R; Godinot C; Torres L; Mathieu J; Bonel G
    J Biol Buccale; 1982 Mar; 10(1):3-9. PubMed ID: 6953066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Age-related changes in mineral of rat and bovine cortical bone.
    Legros R; Balmain N; Bonel G
    Calcif Tissue Int; 1987 Sep; 41(3):137-44. PubMed ID: 3117340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of chronic hypoperfusion on rat cranial bone mineral and organic matrix. A Fourier transform infrared spectroscopy study.
    Boyar H; Zorlu F; Mut M; Severcan F
    Anal Bioanal Chem; 2004 Jun; 379(3):433-8. PubMed ID: 15042274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Raman and infrared spectroscopic study of the anhydrous carbonate minerals shortite and barytocalcite.
    Frost RL; Dickfos MJ
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Nov; 71(1):143-6. PubMed ID: 18222105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Synthesis and characterization of CO-3(2-) doping nano-hydroxyapatite].
    Liao JG; Li YQ; Duan XZ; Liu Q
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Nov; 34(11):3011-4. PubMed ID: 25752048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The orange-brown patina of Salisbury Cathedral (West Porch) surfaces: evidence of its man-made origin.
    Martín-Gil J; Martín-Gil FJ; del Carmen Ramos-Sánchez M; Martín-Ramos P
    Environ Sci Pollut Res Int; 2005 Sep; 12(5):285-9. PubMed ID: 16206722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Infrared spectra of carbonate apatites: v2-Region bands.
    Fleet ME
    Biomaterials; 2009 Mar; 30(8):1473-81. PubMed ID: 19111895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fourier transform infrared spectroscopy research on subchondral bone in osteoarthritis.
    Zhai M; Lu Y; Fu J; Zhu Y; Zhao Y; Shang L; Yin J
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jul; 218():243-247. PubMed ID: 31003049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fourier transform Raman spectroscopy of synthetic and biological calcium phosphates.
    Sauer GR; Zunic WB; Durig JR; Wuthier RE
    Calcif Tissue Int; 1994 May; 54(5):414-20. PubMed ID: 8062160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Infrared and infrared emission spectroscopy of the zinc carbonate mineral smithsonite.
    Frost RL; Martens WN; Wain DL; Hales MC
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Oct; 70(5):1120-6. PubMed ID: 18054839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrothermal synthesis and thermal evolution of carbonate-fluorhydroxyapatite scaffold from cuttlefish bones.
    Tkalčec E; Popović J; Orlić S; Milardović S; Ivanković H
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():578-86. PubMed ID: 25063156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A vibrational spectroscopic study of tengerite-(Y) Y2(CO3)3 2-3H2O.
    Frost RL; López A; Wang L; Scholz R; Sampaio NP; de Oliveira FA
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 137():612-6. PubMed ID: 25244294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.