These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 25059331)

  • 21. Redox-based electron exchange capacity of biowaste-derived biochar accelerates syntrophic phenol oxidation for methanogenesis via direct interspecies electron transfer.
    Wang G; Gao X; Li Q; Zhao H; Liu Y; Wang XC; Chen R
    J Hazard Mater; 2020 May; 390():121726. PubMed ID: 31806442
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Methane production and methanogenic archaeal communities in two types of paddy soil amended with different amounts of rice straw.
    Bao QL; Xiao KQ; Chen Z; Yao HY; Zhu YG
    FEMS Microbiol Ecol; 2014 May; 88(2):372-85. PubMed ID: 24579928
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Methane production by
    Zhou J; Smith JA; Li M; Holmes DE
    mBio; 2023 Aug; 14(4):e0036023. PubMed ID: 37306514
    [No Abstract]   [Full Text] [Related]  

  • 24. The importance of hydrogen and formate transfer for syntrophic fatty, aromatic and alicyclic metabolism.
    Sieber JR; Le HM; McInerney MJ
    Environ Microbiol; 2014 Jan; 16(1):177-88. PubMed ID: 24387041
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Syntrophic-archaeal associations in a nutrient-impacted freshwater marsh.
    Chauhan A; Reddy KR; Ogram AV
    J Appl Microbiol; 2006; 100(1):73-84. PubMed ID: 16405687
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Syntrophic growth with direct interspecies electron transfer as the primary mechanism for energy exchange.
    Shrestha PM; Rotaru AE; Aklujkar M; Liu F; Shrestha M; Summers ZM; Malvankar N; Flores DC; Lovley DR
    Environ Microbiol Rep; 2013 Dec; 5(6):904-10. PubMed ID: 24249299
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Response of methane production via propionate oxidation to carboxylated multiwalled carbon nanotubes in paddy soil enrichments.
    Zhang J; Xia X; Li S; Ran W
    PeerJ; 2018; 6():e4267. PubMed ID: 29340254
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Conductive iron oxide minerals accelerate syntrophic cooperation in methanogenic benzoate degradation.
    Zhuang L; Tang J; Wang Y; Hu M; Zhou S
    J Hazard Mater; 2015 Aug; 293():37-45. PubMed ID: 25827267
    [TBL] [Abstract][Full Text] [Related]  

  • 29. DNA-based stable isotope probing identifies formate-metabolizing methanogenic archaea in paddy soil.
    Xu J; Jia Z; Lin X; Feng Y
    Microbiol Res; 2017 Sep; 202():36-42. PubMed ID: 28647121
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Methanogenesis affected by the co-occurrence of iron(III) oxides and humic substances.
    Zhou S; Xu J; Yang G; Zhuang L
    FEMS Microbiol Ecol; 2014 Apr; 88(1):107-20. PubMed ID: 24372096
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Response of a rice paddy soil methanogen to syntrophic growth as revealed by transcriptional analyses.
    Liu P; Yang Y; Lü Z; Lu Y
    Appl Environ Microbiol; 2014 Aug; 80(15):4668-76. PubMed ID: 24837392
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Acetoclastic and hydrogenotrophic methane production and methanogenic populations in an acidic West-Siberian peat bog.
    Kotsyurbenko OR; Chin KJ; Glagolev MV; Stubner S; Simankova MV; Nozhevnikova AN; Conrad R
    Environ Microbiol; 2004 Nov; 6(11):1159-73. PubMed ID: 15479249
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metabolic interactions in methanogenic and sulfate-reducing bioreactors.
    Stams AJ; Plugge CM; de Bok FA; van Houten BH; Lens P; Dijkman H; Weijma J
    Water Sci Technol; 2005; 52(1-2):13-20. PubMed ID: 16187442
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation.
    Cruz Viggi C; Rossetti S; Fazi S; Paiano P; Majone M; Aulenta F
    Environ Sci Technol; 2014 Jul; 48(13):7536-43. PubMed ID: 24901501
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The anaerobic oxidation of methane in paddy soil by ferric iron and nitrate, and the microbial communities involved.
    Luo D; Meng X; Zheng N; Li Y; Yao H; Chapman SJ
    Sci Total Environ; 2021 Sep; 788():147773. PubMed ID: 34029806
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of inoculum concentration on methanogenesis by direct interspecies electron transfer: Performance and microbial community composition.
    Kang HJ; Lee SH; Lim TG; Park HD
    Bioresour Technol; 2019 Nov; 291():121881. PubMed ID: 31394488
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Syntrophy Goes Electric: Direct Interspecies Electron Transfer.
    Lovley DR
    Annu Rev Microbiol; 2017 Sep; 71():643-664. PubMed ID: 28697668
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cooperative growth of Geobacter sulfurreducens and Clostridium pasteurianum with subsequent metabolic shift in glycerol fermentation.
    Moscoviz R; de Fouchécour F; Santa-Catalina G; Bernet N; Trably E
    Sci Rep; 2017 Mar; 7():44334. PubMed ID: 28287150
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Syntrophic associations from hypersaline soda lakes converting organic acids and alcohols to methane at extremely haloalkaline conditions.
    Sorokin DY; Abbas B; Geleijnse M; Kolganova TV; Kleerebezem R; van Loosdrecht MC
    Environ Microbiol; 2016 Sep; 18(9):3189-202. PubMed ID: 27387660
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Secondary Mineralization of Ferrihydrite Affects Microbial Methanogenesis in Geobacter-Methanosarcina Cocultures.
    Tang J; Zhuang L; Ma J; Tang Z; Yu Z; Zhou S
    Appl Environ Microbiol; 2016 Oct; 82(19):5869-77. PubMed ID: 27451453
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.