BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 25059373)

  • 1. [Clustered regularly interspaced short palindromic repeat associated protein genes cas1 and cas2 in Shigella].
    Xue Z; Wang Y; Duan G; Wang P; Wang L; Guo X; Xi Y
    Zhonghua Liu Xing Bing Xue Za Zhi; 2014 May; 35(5):581-4. PubMed ID: 25059373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship between drug resistance and the clustered, regularly interspaced, short, palindromic repeat-associated protein genes cas1 and cas2 in Shigella from giant panda dung.
    Ren L; Deng LH; Zhang RP; Wang CD; Li DS; Xi LX; Chen ZR; Yang R; Huang J; Zeng YR; Wu HL; Cao SJ; Wu R; Huang Y; Yan QG
    Medicine (Baltimore); 2017 Feb; 96(7):e5922. PubMed ID: 28207509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How type II CRISPR-Cas establish immunity through Cas1-Cas2-mediated spacer integration.
    Xiao Y; Ng S; Nam KH; Ke A
    Nature; 2017 Oct; 550(7674):137-141. PubMed ID: 28869593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cas1 and Cas2 From the Type II-C CRISPR-Cas System of
    He Y; Wang M; Liu M; Huang L; Liu C; Zhang X; Yi H; Cheng A; Zhu D; Yang Q; Wu Y; Zhao X; Chen S; Jia R; Zhang S; Liu Y; Yu Y; Zhang L
    Front Cell Infect Microbiol; 2018; 8():195. PubMed ID: 29951376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Detection of CRISPR and its relationship to drug resistance in Shigella].
    Wang L; Wang Y; Duan G; Xue Z; Guo X; Wang P; Xi Y; Yang H
    Wei Sheng Wu Xue Bao; 2015 Apr; 55(4):476-83. PubMed ID: 26211322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR repeat sequences and relative spacing specify DNA integration by Pyrococcus furiosus Cas1 and Cas2.
    Grainy J; Garrett S; Graveley BR; P Terns M
    Nucleic Acids Res; 2019 Aug; 47(14):7518-7531. PubMed ID: 31219587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Molecular characteristics of Clustered Regularly Interspaced Short Palindromic Repeat in Shigella].
    Xue Z; Wang Y; Duan G; Yang H; Xi Y; Wang P; Wang L; Guo X
    Zhonghua Liu Xing Bing Xue Za Zhi; 2015 Aug; 36(8):875-8. PubMed ID: 26714547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA binding specificities of Escherichia coli Cas1-Cas2 integrase drive its recruitment at the CRISPR locus.
    Moch C; Fromant M; Blanquet S; Plateau P
    Nucleic Acids Res; 2017 Mar; 45(5):2714-2723. PubMed ID: 28034956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct CRISPR spacer acquisition from RNA by a natural reverse transcriptase-Cas1 fusion protein.
    Silas S; Mohr G; Sidote DJ; Markham LM; Sanchez-Amat A; Bhaya D; Lambowitz AM; Fire AZ
    Science; 2016 Feb; 351(6276):aad4234. PubMed ID: 26917774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cas1-Cas2 complex formation mediates spacer acquisition during CRISPR-Cas adaptive immunity.
    Nuñez JK; Kranzusch PJ; Noeske J; Wright AV; Davies CW; Doudna JA
    Nat Struct Mol Biol; 2014 Jun; 21(6):528-34. PubMed ID: 24793649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Allosteric regulation in CRISPR/Cas1-Cas2 protospacer acquisition mediated by DNA and Cas2.
    Long C; Dai L; E C; Da LT; Yu J
    Biophys J; 2021 Aug; 120(15):3126-3137. PubMed ID: 34197800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR Outsourcing: Commissioning IHF for Site-Specific Integration of Foreign DNA at the CRISPR Array.
    Wei Y; Terns MP
    Mol Cell; 2016 Jun; 62(6):803-804. PubMed ID: 27315553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asymmetric positioning of Cas1-2 complex and Integration Host Factor induced DNA bending guide the unidirectional homing of protospacer in CRISPR-Cas type I-E system.
    Yoganand KN; Sivathanu R; Nimkar S; Anand B
    Nucleic Acids Res; 2017 Jan; 45(1):367-381. PubMed ID: 27899566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and variation of CRISPR and CRISPR-flanking regions in deleted-direct repeat region Mycobacterium tuberculosis complex strains.
    Freidlin PJ; Nissan I; Luria A; Goldblatt D; Schaffer L; Kaidar-Shwartz H; Chemtob D; Dveyrin Z; Head SR; Rorman E
    BMC Genomics; 2017 Feb; 18(1):168. PubMed ID: 28201993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The
    Wei J; Lu N; Li Z; Wu X; Jiang T; Xu L; Yang C; Guo S
    Biomed Res Int; 2019; 2019():7861695. PubMed ID: 31061828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptional regulator-mediated activation of adaptation genes triggers CRISPR de novo spacer acquisition.
    Liu T; Li Y; Wang X; Ye Q; Li H; Liang Y; She Q; Peng N
    Nucleic Acids Res; 2015 Jan; 43(2):1044-55. PubMed ID: 25567986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Foreign DNA capture during CRISPR-Cas adaptive immunity.
    Nuñez JK; Harrington LB; Kranzusch PJ; Engelman AN; Doudna JA
    Nature; 2015 Nov; 527(7579):535-8. PubMed ID: 26503043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protecting genome integrity during CRISPR immune adaptation.
    Wright AV; Doudna JA
    Nat Struct Mol Biol; 2016 Oct; 23(10):876-883. PubMed ID: 27595346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structures of the CRISPR genome integration complex.
    Wright AV; Liu JJ; Knott GJ; Doxzen KW; Nogales E; Doudna JA
    Science; 2017 Sep; 357(6356):1113-1118. PubMed ID: 28729350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Progress of genome engineering technology via clustered regularly interspaced short palindromic repeats--a review].
    Li H; Qiu S; Song H
    Wei Sheng Wu Xue Bao; 2013 Oct; 53(10):1025-30. PubMed ID: 24409757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.