BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 25059596)

  • 1. Comparative mapping in the Poaceae family reveals translocations in the complex polyploid genome of sugarcane.
    Aitken KS; McNeil MD; Berkman PJ; Hermann S; Kilian A; Bundock PC; Li J
    BMC Plant Biol; 2014 Jul; 14():190. PubMed ID: 25059596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A BAC library of the SP80-3280 sugarcane variety (saccharum sp.) and its inferred microsynteny with the sorghum genome.
    Figueira TR; Okura V; Rodrigues da Silva F; Jose da Silva M; Kudrna D; Ammiraju JS; Talag J; Wing R; Arruda P
    BMC Res Notes; 2012 Apr; 5():185. PubMed ID: 22524198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comprehensive genetic map of sugarcane that provides enhanced map coverage and integrates high-throughput Diversity Array Technology (DArT) markers.
    Aitken KS; McNeil MD; Hermann S; Bundock PC; Kilian A; Heller-Uszynska K; Henry RJ; Li J
    BMC Genomics; 2014 Feb; 15(1):152. PubMed ID: 24564784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A high-density genetic recombination map of sequence-tagged sites for sorghum, as a framework for comparative structural and evolutionary genomics of tropical grains and grasses.
    Bowers JE; Abbey C; Anderson S; Chang C; Draye X; Hoppe AH; Jessup R; Lemke C; Lennington J; Li Z; Lin YR; Liu SC; Luo L; Marler BS; Ming R; Mitchell SE; Qiang D; Reischmann K; Schulze SR; Skinner DN; Wang YW; Kresovich S; Schertz KF; Paterson AH
    Genetics; 2003 Sep; 165(1):367-86. PubMed ID: 14504243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A framework genetic map for Miscanthus sinensis from RNAseq-based markers shows recent tetraploidy.
    Swaminathan K; Chae WB; Mitros T; Varala K; Xie L; Barling A; Glowacka K; Hall M; Jezowski S; Ming R; Hudson M; Juvik JA; Rokhsar DS; Moose SP
    BMC Genomics; 2012 Apr; 13():142. PubMed ID: 22524439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resistance gene analogues in sugarcane and sorghum and their association with quantitative trait loci for rust resistance.
    McIntyre CL; Casu RE; Drenth J; Knight D; Whan VA; Croft BJ; Jordan DR; Manners JM
    Genome; 2005 Jun; 48(3):391-400. PubMed ID: 16121236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Building the sugarcane genome for biotechnology and identifying evolutionary trends.
    de Setta N; Monteiro-Vitorello CB; Metcalfe CJ; Cruz GM; Del Bem LE; Vicentini R; Nogueira FT; Campos RA; Nunes SL; Turrini PC; Vieira AP; Ochoa Cruz EA; Corrêa TC; Hotta CT; de Mello Varani A; Vautrin S; da Trindade AS; de Mendonça Vilela M; Lembke CG; Sato PM; de Andrade RF; Nishiyama MY; Cardoso-Silva CB; Scortecci KC; Garcia AA; Carneiro MS; Kim C; Paterson AH; Bergès H; D'Hont A; de Souza AP; Souza GM; Vincentz M; Kitajima JP; Van Sluys MA
    BMC Genomics; 2014 Jun; 15(1):540. PubMed ID: 24984568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic analysis of the sugarcane (Saccharum spp.) cultivar 'LCP 85-384'. I. Linkage mapping using AFLP, SSR, and TRAP markers.
    Andru S; Pan YB; Thongthawee S; Burner DM; Kimbeng CA
    Theor Appl Genet; 2011 Jun; 123(1):77-93. PubMed ID: 21472411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative analysis of QTLs affecting plant height and flowering among closely-related diploid and polyploid genomes.
    Ming R; Del Monte TA; Hernandez E; Moore PH; Irvine JE; Paterson AH
    Genome; 2002 Oct; 45(5):794-803. PubMed ID: 12416611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Orthologous comparison in a gene-rich region among grasses reveals stability in the sugarcane polyploid genome.
    Jannoo N; Grivet L; Chantret N; Garsmeur O; Glaszmann JC; Arruda P; D'Hont A
    Plant J; 2007 May; 50(4):574-85. PubMed ID: 17425713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diploid/polyploid syntenic shuttle mapping and haplotype-specific chromosome walking toward a rust resistance gene (Bru1) in highly polyploid sugarcane (2n approximately 12x approximately 115).
    Le Cunff L; Garsmeur O; Raboin LM; Pauquet J; Telismart H; Selvi A; Grivet L; Philippe R; Begum D; Deu M; Costet L; Wing R; Glaszmann JC; D'Hont A
    Genetics; 2008 Sep; 180(1):649-60. PubMed ID: 18757946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Domestication to crop improvement: genetic resources for Sorghum and Saccharum (Andropogoneae).
    Dillon SL; Shapter FM; Henry RJ; Cordeiro G; Izquierdo L; Lee LS
    Ann Bot; 2007 Nov; 100(5):975-89. PubMed ID: 17766842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of Three Sugarcane Homo/Homeologous Regions Suggests Independent Polyploidization Events of Saccharum officinarum and Saccharum spontaneum.
    Vilela MM; Del Bem LE; Van Sluys MA; de Setta N; Kitajima JP; Cruz GM; Sforça DA; de Souza AP; Ferreira PC; Grativol C; Cardoso-Silva CB; Vicentini R; Vincentz M
    Genome Biol Evol; 2017 Feb; 9(2):266-278. PubMed ID: 28082603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A consensus genetic map of sorghum that integrates multiple component maps and high-throughput Diversity Array Technology (DArT) markers.
    Mace ES; Rami JF; Bouchet S; Klein PE; Klein RR; Kilian A; Wenzl P; Xia L; Halloran K; Jordan DR
    BMC Plant Biol; 2009 Jan; 9():13. PubMed ID: 19171067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequence-tagged high-density genetic maps of Zoysia japonica provide insights into genome evolution in Chloridoideae.
    Wang F; Singh R; Genovesi AD; Wai CM; Huang X; Chandra A; Yu Q
    Plant J; 2015 Jun; 82(5):744-57. PubMed ID: 25846381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative genetic mapping between duplicated segments on maize chromosomes 3 and 8 and homoeologous regions in sorghum and sugarcane.
    Dufour P; Grivet L; D'Hont A; Deu M; Trouche G; Glaszmann JC; Hamon P
    Theor Appl Genet; 1996 Jun; 92(8):1024-30. PubMed ID: 24166631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microcollinearity between autopolyploid sugarcane and diploid sorghum genomes.
    Wang J; Roe B; Macmil S; Yu Q; Murray JE; Tang H; Chen C; Najar F; Wiley G; Bowers J; Van Sluys MA; Rokhsar DS; Hudson ME; Moose SP; Paterson AH; Ming R
    BMC Genomics; 2010 Apr; 11():261. PubMed ID: 20416060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploiting rice-sorghum synteny for targeted development of EST-SSRs to enrich the sorghum genetic linkage map.
    Ramu P; Kassahun B; Senthilvel S; Ashok Kumar C; Jayashree B; Folkertsma RT; Reddy LA; Kuruvinashetti MS; Haussmann BI; Hash CT
    Theor Appl Genet; 2009 Nov; 119(7):1193-204. PubMed ID: 19669123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction of a genetic linkage map for Saccharum officinarum incorporating both simplex and duplex markers to increase genome coverage.
    Aitken KS; Jackson PA; McIntyre CL
    Genome; 2007 Aug; 50(8):742-56. PubMed ID: 17893734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A genome-wide BAC end-sequence survey of sugarcane elucidates genome composition, and identifies BACs covering much of the euchromatin.
    Kim C; Lee TH; Compton RO; Robertson JS; Pierce GJ; Paterson AH
    Plant Mol Biol; 2013 Jan; 81(1-2):139-47. PubMed ID: 23161199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.