These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 25059894)

  • 1. Development of dynamic models of the Mauch prosthetic knee for prospective gait simulation.
    Chien MS; Erdemir A; van den Bogert AJ; Smith WA
    J Biomech; 2014 Sep; 47(12):3178-84. PubMed ID: 25059894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinematic and kinetic comparisons of transfemoral amputee gait using C-Leg and Mauch SNS prosthetic knees.
    Segal AD; Orendurff MS; Klute GK; McDowell ML; Pecoraro JA; Shofer J; Czerniecki JM
    J Rehabil Res Dev; 2006; 43(7):857-70. PubMed ID: 17436172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological parameters analysis of transfemoral amputees with different prosthetic knees.
    Li S; Cao W; Yu H; Meng Q; Chen W
    Acta Bioeng Biomech; 2019; 21(3):135-142. PubMed ID: 31798017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A clinical comparison of variable-damping and mechanically passive prosthetic knee devices.
    Johansson JL; Sherrill DM; Riley PO; Bonato P; Herr H
    Am J Phys Med Rehabil; 2005 Aug; 84(8):563-75. PubMed ID: 16034225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of transfemoral amputees using a passive microprocessor-controlled knee versus an active powered microprocessor-controlled knee for level walking.
    Creylman V; Knippels I; Janssen P; Biesbrouck E; Lechler K; Peeraer L
    Biomed Eng Online; 2016 Dec; 15(Suppl 3):142. PubMed ID: 28105945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional gait analysis of trans-femoral amputees using two different single-axis prosthetic knees with hydraulic swing-phase control: Kinematic and kinetic comparison of two prosthetic knees.
    Sapin E; Goujon H; de Almeida F; Fodé P; Lavaste F
    Prosthet Orthot Int; 2008 Jun; 32(2):201-18. PubMed ID: 18569888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gait efficiency using the C-Leg.
    Orendurff MS; Segal AD; Klute GK; McDowell ML; Pecoraro JA; Czerniecki JM
    J Rehabil Res Dev; 2006; 43(2):239-46. PubMed ID: 16847790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pilot study of the microprocessor-controlled prosthetic knee with a novel hydraulic damper.
    Zhang Y; Cao W; Yu H; Meng Q; Chen W
    Technol Health Care; 2020; 28(1):93-97. PubMed ID: 31476188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of Interrelationships among Voluntary and Prosthetic Leg Joint Parameters Using Cyclograms.
    Jasni F; Hamzaid NA; Mohd Syah NE; Chung TY; Abu Osman NA
    Front Neurosci; 2017; 11():230. PubMed ID: 28487630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporal-spatial parameters of gait in transfemoral amputees: Comparison of bionic and mechanically passive knee joints.
    Uchytil J; Jandacka D; Zahradnik D; Farana R; Janura M
    Prosthet Orthot Int; 2014 Jun; 38(3):199-203. PubMed ID: 23824546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stance phase control of above-knee prostheses: knee control versus SACH foot design.
    Stein JL; Flowers WC
    J Biomech; 1987; 20(1):19-28. PubMed ID: 3558425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crossover study of amputee stair ascent and descent biomechanics using Genium and C-Leg prostheses with comparison to non-amputee control.
    Lura DJ; Wernke MW; Carey SL; Kahle JT; Miro RM; Highsmith MJ
    Gait Posture; 2017 Oct; 58():103-107. PubMed ID: 28763712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic asymmetry in transfemoral amputees while performing sit to stand and stand to sit movements.
    Highsmith MJ; Kahle JT; Carey SL; Lura DJ; Dubey RV; Csavina KR; Quillen WS
    Gait Posture; 2011 May; 34(1):86-91. PubMed ID: 21524913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Target of physiological gait: Realization of speed adaptive control for a prosthetic knee during swing flexion.
    Cao W; Yu H; Zhao W; Li J; Wei X
    Technol Health Care; 2018; 26(1):133-144. PubMed ID: 29060946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variable stiffness actuated prosthetic knee to restore knee buckling during stance: a modeling study.
    Wentink EC; Koopman HF; Stramigioli S; Rietman JS; Veltink PH
    Med Eng Phys; 2013 Jun; 35(6):838-45. PubMed ID: 23000012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Personalized design of ankle-foot prosthesis based on computer modeling of amputee locomotion.
    Gharini M; Mohammadi Moghaddam M; Farahmand F
    Assist Technol; 2020; 32(2):100-108. PubMed ID: 29944462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of 3D printed anatomically scalable transfemoral prosthetic knee.
    Ramakrishnan T; Schlafly M; Reed KB
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1160-1164. PubMed ID: 28813978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinematics in the terminal swing phase of unilateral transfemoral amputees: microprocessor-controlled versus swing-phase control prosthetic knees.
    Mâaref K; Martinet N; Grumillier C; Ghannouchi S; André JM; Paysant J
    Arch Phys Med Rehabil; 2010 Jun; 91(6):919-25. PubMed ID: 20510984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of prosthetic ankle mobility in the sagittal plane on the gait of transfemoral amputees wearing a stance phase controlled knee prosthesis.
    Lee S; Hong J
    Proc Inst Mech Eng H; 2009 Feb; 223(2):263-71. PubMed ID: 19278201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Effects of the Inertial Properties of Above-Knee Prostheses on Optimal Stiffness, Damping, and Engagement Parameters of Passive Prosthetic Knees.
    Narang YS; Murthy Arelekatti VN; Winter AG
    J Biomech Eng; 2016 Dec; 138(12):. PubMed ID: 27429248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.