These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 25060212)

  • 1. Biomechanical evaluation of bending strength of spinal pedicle screws, including cylindrical, conical, dual core and double dual core designs using numerical simulations and mechanical tests.
    Amaritsakul Y; Chao CK; Lin J
    Med Eng Phys; 2014 Sep; 36(9):1218-23. PubMed ID: 25060212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increasing bending strength and pullout strength in conical pedicle screws: biomechanical tests and finite element analyses.
    Chao CK; Hsu CC; Wang JL; Lin J
    J Spinal Disord Tech; 2008 Apr; 21(2):130-8. PubMed ID: 18391719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of the bending performance of solid and cannulated spinal pedicle screws using finite element analyses and biomechanical tests.
    Shih KS; Hsu CC; Hou SM; Yu SC; Liaw CK
    Med Eng Phys; 2015 Sep; 37(9):879-84. PubMed ID: 26208430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison study of the pullout strength of conventional spinal pedicle screws and a novel design in full and backed-out insertions using mechanical tests.
    Amaritsakul Y; Chao CK; Lin J
    Proc Inst Mech Eng H; 2014 Mar; 228(3):250-7. PubMed ID: 24496916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increase of pullout strength of spinal pedicle screws with conical core: biomechanical tests and finite element analyses.
    Hsu CC; Chao CK; Wang JL; Hou SM; Tsai YT; Lin J
    J Orthop Res; 2005 Jul; 23(4):788-94. PubMed ID: 16022991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical performance of cylindrical and dual core pedicle screws in calf and human vertebrae.
    Lill CA; Schneider E; Goldhahn J; Haslemann A; Zeifang F
    Arch Orthop Trauma Surg; 2006 Dec; 126(10):686-94. PubMed ID: 16865403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pedicle screw fixation strength: pullout versus insertional torque.
    Inceoglu S; Ferrara L; McLain RF
    Spine J; 2004; 4(5):513-8. PubMed ID: 15363421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro validation of a novel mechanical model for testing the anchorage capacity of pedicle screws using physiological load application.
    Liebsch C; Zimmermann J; Graf N; Schilling C; Wilke HJ; Kienle A
    J Mech Behav Biomed Mater; 2018 Jan; 77():578-585. PubMed ID: 29096123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A neurogenetic approach to a multiobjective design optimization of spinal pedicle screws.
    Chao CK; Lin J; Putra ST; Hsu CC
    J Biomech Eng; 2010 Sep; 132(9):091006. PubMed ID: 20815640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of different radial hole designs on pullout and structural strength of cannulated pedicle screws.
    Chen HC; Lai YS; Chen WC; Chen JW; Chang CM; Chen YL; Wang ST; Cheng CK
    Med Eng Phys; 2015 Aug; 37(8):746-51. PubMed ID: 26054806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual pitch screw design provides equivalent fixation to upsized screw diameter in revision pedicle screw instrumentation: a cadaveric biomechanical study.
    Weegens R; Carreon LY; Voor M; Gum JL; Laratta JL; Glassman SD
    Spine J; 2022 Jan; 22(1):168-173. PubMed ID: 34274501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and biomechanical study of a modified pedicle screw.
    Liu T; Zheng WJ; Li CQ; Liu GD; Zhou Y
    Chin J Traumatol; 2010 Aug; 13(4):222-8. PubMed ID: 20670579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and biomechanical test of a new pedicle screw for thoracolumbar spinal surgery.
    Yao GL; Xiao ZZ; Xiao T; Zhong NS; Huang SH; Liu JM; Liu ZL
    Med Eng Phys; 2022 Jun; 104():103808. PubMed ID: 35641080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical performance of cylindrical and dual-core pedicle screws after repeated insertion.
    Defino HL; Rosa RC; Silva P; Shimano AC; Albuquerque de Paula FJ; Volpon JB
    Spine (Phila Pa 1976); 2012 Jun; 37(14):1187-91. PubMed ID: 22880208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increasing bending strength of tibial locking screws: mechanical tests and finite element analyses.
    Chao CK; Hsu CC; Wang JL; Lin J
    Clin Biomech (Bristol, Avon); 2007 Jan; 22(1):59-66. PubMed ID: 16959388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finite element method-based study of pedicle screw-bone connection in pullout test and physiological spinal loads.
    Xu M; Yang J; Lieberman IH; Haddas R
    Med Eng Phys; 2019 May; 67():11-21. PubMed ID: 30879945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A biomechanical assessment of infra-laminar hooks as an alternative to supra-laminar hooks in thoracolumbar fixation.
    Murakami H; Tsai KJ; Attallah-Wasif ES; Yamazaki K; Shimamura T; Hutton WC
    Spine (Phila Pa 1976); 2006 Apr; 31(9):967-71. PubMed ID: 16641771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical Properties of Novel Porous Scaffold Core and Hollow Lateral Hole Pedicle Screws: A Comparative Study in Bama Pigs.
    Hu Y; Chen X; Chu Z; Luo L; Gan Z; Zhong J; Yuan Z; Zhu B; Dong W
    Orthop Surg; 2024 Jul; 16(7):1718-1725. PubMed ID: 38766934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanical Analysis of a Novel Pedicle Screw Anchor Designed for the Osteoporotic Population.
    Gates TA; Moldavsky M; Salloum K; Dunbar GL; Park J; Bucklen B
    World Neurosurg; 2015 Jun; 83(6):965-9. PubMed ID: 25779853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Minimizing Pedicle Screw Pullout Risks: A Detailed Biomechanical Analysis of Screw Design and Placement.
    Bianco RJ; Arnoux PJ; Wagnac E; Mac-Thiong JM; Aubin CÉ
    Clin Spine Surg; 2017 Apr; 30(3):E226-E232. PubMed ID: 28323704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.