BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 25060240)

  • 1. An evaluation of sharp cut cyclones for sampling diesel particulate matter aerosol in the presence of respirable dust.
    Cauda E; Sheehan M; Gussman R; Kenny L; Volkwein J
    Ann Occup Hyg; 2014 Oct; 58(8):995-1005. PubMed ID: 25060240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of respirable virtual-cyclone samplers.
    Huang SH; Kuo YM; Lin CW; Chen TJ; Liu J; Gui H; Chen CC
    J Occup Environ Hyg; 2019 Dec; 16(12):785-792. PubMed ID: 31647753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance of high flow rate samplers for respirable particle collection.
    Lee T; Kim SW; Chisholm WP; Slaven J; Harper M
    Ann Occup Hyg; 2010 Aug; 54(6):697-709. PubMed ID: 20660144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance of High Flow Rate Personal Respirable Samplers When Challenged with Mineral Aerosols of Different Particle Size Distributions.
    Stacey P; Thorpe A; Echt A
    Ann Occup Hyg; 2016 May; 60(4):479-92. PubMed ID: 26865560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Passive personal air sampling of dust in a working environment-A pilot study.
    Shirdel M; Bergdahl IA; Andersson BM; Wingfors H; Sommar JN; Liljelind IE
    J Occup Environ Hyg; 2019 Oct; 16(10):675-684. PubMed ID: 31442106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monitoring diesel particulate matter and calculating diesel particulate densities using Grimm model 1.109 real-time aerosol monitors in underground mines.
    Kimbal KC; Pahler L; Larson R; VanDerslice J
    J Occup Environ Hyg; 2012; 9(6):353-61. PubMed ID: 22554097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of pump pulsation in respirable size-selective sampling: part II. Changes in sampling efficiency.
    Lee EG; Lee T; Kim SW; Lee L; Flemmer MM; Harper M
    Ann Occup Hyg; 2014 Jan; 58(1):74-84. PubMed ID: 24064963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving the UNC Passive Aerosol Sampler Model Based on Comparison with Commonly Used Aerosol Sampling Methods.
    Shirdel M; Andersson BM; Bergdahl IA; Sommar JN; Wingfors H; Liljelind IE
    Ann Work Expo Health; 2018 Mar; 62(3):328-338. PubMed ID: 29300818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of a portable photometer for estimating diesel particulate matter concentrations in an underground limestone mine.
    Watts WF; Gladis DD; Schumacher MF; Ragatz AC; Kittelson DB
    Ann Occup Hyg; 2010 Jul; 54(5):566-74. PubMed ID: 20410071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of Respirable Mass Concentrations Measured by a Personal Dust Monitor and a Personal DataRAM to Gravimetric Measurements.
    Halterman A; Sousan S; Peters TM
    Ann Work Expo Health; 2017 Dec; 62(1):62-71. PubMed ID: 29136129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of the SKC DPM cassette for monitoring diesel particulate matter in coal mines.
    Noll JD; Birch E
    J Environ Monit; 2004 Dec; 6(12):973-8. PubMed ID: 15568046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exposure to dust and particle-associated 1-nitropyrene of drivers of diesel-powered equipment in underground mining.
    Scheepers PT; Micka V; Muzyka V; Anzion R; Dahmann D; Poole J; Bos RP
    Ann Occup Hyg; 2003 Jul; 47(5):379-88. PubMed ID: 12855488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Particulate penetration of porous foam used as a low flow rate respirable dust size classifier.
    Page SJ; Volkwein JC; Baron PA; Deye GJ
    Appl Occup Environ Hyg; 2000 Jul; 15(7):561-8. PubMed ID: 10893792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of fifteen respirable aerosol samplers used in occupational hygiene.
    Görner P; Wrobel R; Micka V; Skoda V; Denis J; Fabriès JF
    Ann Occup Hyg; 2001 Jan; 45(1):43-54. PubMed ID: 11137698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calibration of high flow rate thoracic-size selective samplers.
    Lee T; Thorpe A; Cauda E; Harper M
    J Occup Environ Hyg; 2016; 13(6):D93-8. PubMed ID: 26891196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Equivalency of a personal dust monitor to the current United States coal mine respirable dust sampler.
    Page SJ; Volkwein JC; Vinson RP; Joy GJ; Mischler SE; Tuchman DP; McWilliams LJ
    J Environ Monit; 2008 Jan; 10(1):96-101. PubMed ID: 18175022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diesel Exhaust Exposure Assessment Among Tunnel Construction Workers-Correlations Between Nitrogen Dioxide, Respirable Elemental Carbon, and Particle Number.
    Hedmer M; Wierzbicka A; Li H; Albin M; Tinnerberg H; Broberg K
    Ann Work Expo Health; 2017 Jun; 61(5):539-553. PubMed ID: 28371844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laboratory comparison of new high flow rate respirable size-selective sampler.
    Lee T; Thorpe A; Cauda E; Tipton L; Sanderson WT; Echt A
    J Occup Environ Hyg; 2018 Oct; 15(10):755-765. PubMed ID: 30095363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sampling Efficiency and Performance of Selected Thoracic Aerosol Samplers.
    Görner P; Simon X; Boivin A; Bau S
    Ann Work Expo Health; 2017 Aug; 61(7):784-796. PubMed ID: 28810686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of Sub-micrometer-Sized Particles Generated from a Diesel Locomotive and Jackleg Drilling in an Underground Metal Mine.
    Tsai CS; Shin N; Brune J
    Ann Work Expo Health; 2020 Oct; 64(8):876-889. PubMed ID: 32719881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.