These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 25060758)

  • 21. A de novo assembly of the newt transcriptome combined with proteomic validation identifies new protein families expressed during tissue regeneration.
    Looso M; Preussner J; Sousounis K; Bruckskotten M; Michel CS; Lignelli E; Reinhardt R; Höffner S; Krüger M; Tsonis PA; Borchardt T; Braun T
    Genome Biol; 2013 Feb; 14(2):R16. PubMed ID: 23425577
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Profiling Novel Alternative Splicing within Multiple Tissues Provides Useful Insights into Porcine Genome Annotation.
    Feng W; Zhao P; Zheng X; Hu Z; Liu J
    Genes (Basel); 2020 Nov; 11(12):. PubMed ID: 33255998
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deep developmental transcriptome sequencing uncovers numerous new genes and enhances gene annotation in the sponge Amphimedon queenslandica.
    Fernandez-Valverde SL; Calcino AD; Degnan BM
    BMC Genomics; 2015 May; 16(1):387. PubMed ID: 25975661
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In depth annotation of the Anopheles gambiae mosquito midgut transcriptome.
    Padrón A; Molina-Cruz A; Quinones M; Ribeiro JM; Ramphul U; Rodrigues J; Shen K; Haile A; Ramirez JL; Barillas-Mury C
    BMC Genomics; 2014 Jul; 15(1):636. PubMed ID: 25073905
    [TBL] [Abstract][Full Text] [Related]  

  • 25. VESPA: software to facilitate genomic annotation of prokaryotic organisms through integration of proteomic and transcriptomic data.
    Peterson ES; McCue LA; Schrimpe-Rutledge AC; Jensen JL; Walker H; Kobold MA; Webb SR; Payne SH; Ansong C; Adkins JN; Cannon WR; Webb-Robertson BJ
    BMC Genomics; 2012 Apr; 13():131. PubMed ID: 22480257
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Discovery of novel genes and gene isoforms by integrating transcriptomic and proteomic profiling from mouse liver.
    Wu P; Zhang H; Lin W; Hao Y; Ren L; Zhang C; Li N; Wei H; Jiang Y; He F
    J Proteome Res; 2014 May; 13(5):2409-19. PubMed ID: 24717071
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A comprehensive rat transcriptome built from large scale RNA-seq-based annotation.
    Ji X; Li P; Fuscoe JC; Chen G; Xiao W; Shi L; Ning B; Liu Z; Hong H; Wu J; Liu J; Guo L; Kreil DP; Łabaj PP; Zhong L; Bao W; Huang Y; He J; Zhao Y; Tong W; Shi T
    Nucleic Acids Res; 2020 Sep; 48(15):8320-8331. PubMed ID: 32749457
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A draft map of the human proteome.
    Kim MS; Pinto SM; Getnet D; Nirujogi RS; Manda SS; Chaerkady R; Madugundu AK; Kelkar DS; Isserlin R; Jain S; Thomas JK; Muthusamy B; Leal-Rojas P; Kumar P; Sahasrabuddhe NA; Balakrishnan L; Advani J; George B; Renuse S; Selvan LD; Patil AH; Nanjappa V; Radhakrishnan A; Prasad S; Subbannayya T; Raju R; Kumar M; Sreenivasamurthy SK; Marimuthu A; Sathe GJ; Chavan S; Datta KK; Subbannayya Y; Sahu A; Yelamanchi SD; Jayaram S; Rajagopalan P; Sharma J; Murthy KR; Syed N; Goel R; Khan AA; Ahmad S; Dey G; Mudgal K; Chatterjee A; Huang TC; Zhong J; Wu X; Shaw PG; Freed D; Zahari MS; Mukherjee KK; Shankar S; Mahadevan A; Lam H; Mitchell CJ; Shankar SK; Satishchandra P; Schroeder JT; Sirdeshmukh R; Maitra A; Leach SD; Drake CG; Halushka MK; Prasad TS; Hruban RH; Kerr CL; Bader GD; Iacobuzio-Donahue CA; Gowda H; Pandey A
    Nature; 2014 May; 509(7502):575-81. PubMed ID: 24870542
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A survey of the complex transcriptome from the highly polyploid sugarcane genome using full-length isoform sequencing and de novo assembly from short read sequencing.
    Hoang NV; Furtado A; Mason PJ; Marquardt A; Kasirajan L; Thirugnanasambandam PP; Botha FC; Henry RJ
    BMC Genomics; 2017 May; 18(1):395. PubMed ID: 28532419
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative genomics in cyprinids: common carp ESTs help the annotation of the zebrafish genome.
    Christoffels A; Bartfai R; Srinivasan H; Komen H; Orban L
    BMC Bioinformatics; 2006 Dec; 7 Suppl 5(Suppl 5):S2. PubMed ID: 17254304
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Transcriptome Map of Actinobacillus pleuropneumoniae at Single-Nucleotide Resolution Using Deep RNA-Seq.
    Su Z; Zhu J; Xu Z; Xiao R; Zhou R; Li L; Chen H
    PLoS One; 2016; 11(3):e0152363. PubMed ID: 27018591
    [TBL] [Abstract][Full Text] [Related]  

  • 32. De novo assembly and validation of planaria transcriptome by massive parallel sequencing and shotgun proteomics.
    Adamidi C; Wang Y; Gruen D; Mastrobuoni G; You X; Tolle D; Dodt M; Mackowiak SD; Gogol-Doering A; Oenal P; Rybak A; Ross E; Sánchez Alvarado A; Kempa S; Dieterich C; Rajewsky N; Chen W
    Genome Res; 2011 Jul; 21(7):1193-200. PubMed ID: 21536722
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Methods to Study Long Noncoding RNA Expression and Dynamics in Zebrafish Using RNA Sequencing.
    Mathew S; Sivadas A; Sehgal P; Kaushik K; Vellarikkal SK; Scaria V; Sivasubbu S
    Methods Mol Biol; 2019; 1912():77-110. PubMed ID: 30635891
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Integrating proteomic and transcriptomic analyses of loquat (Eriobotrya japonica Lindl.) in response to cold stress.
    Lou X; Wang H; Ni X; Gao Z; Iqbal S
    Gene; 2018 Nov; 677():57-65. PubMed ID: 30017739
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Rhinella arenarum transcriptome: de novo assembly, annotation and gene prediction.
    Ceschin DG; Pires NS; Mardirosian MN; Lascano CI; Venturino A
    Sci Rep; 2020 Jan; 10(1):1053. PubMed ID: 31974515
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Iterative genome correction largely improves proteomic analysis of nonmodel organisms.
    Wu X; Xu L; Gu W; Xu Q; He QY; Sun X; Zhang G
    J Proteome Res; 2014 Jun; 13(6):2724-34. PubMed ID: 24809469
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Proteogenomic Analysis of Trichophyton rubrum Aided by RNA Sequencing.
    Xu X; Liu T; Ren X; Liu B; Yang J; Chen L; Wei C; Zheng J; Dong J; Sun L; Zhu Y; Jin Q
    J Proteome Res; 2015 May; 14(5):2207-18. PubMed ID: 25868943
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transcriptome and proteome exploration to provide a resource for the study of Agrocybe aegerita.
    Wang M; Gu B; Huang J; Jiang S; Chen Y; Yin Y; Pan Y; Yu G; Li Y; Wong BH; Liang Y; Sun H
    PLoS One; 2013; 8(2):e56686. PubMed ID: 23418592
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Next-generation sequencing-based transcriptomic and proteomic analysis of the common reed, Phragmites australis (Poaceae), reveals genes involved in invasiveness and rhizome specificity.
    He R; Kim MJ; Nelson W; Balbuena TS; Kim R; Kramer R; Crow JA; May GD; Thelen JJ; Soderlund CA; Gang DR
    Am J Bot; 2012 Feb; 99(2):232-47. PubMed ID: 22301892
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deep sequencing of the innate immune transcriptomic response of zebrafish embryos to Salmonella infection.
    Ordas A; Hegedus Z; Henkel CV; Stockhammer OW; Butler D; Jansen HJ; Racz P; Mink M; Spaink HP; Meijer AH
    Fish Shellfish Immunol; 2011 Nov; 31(5):716-24. PubMed ID: 20816807
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.