These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 25061094)
1. Role of cytoskeleton in regulating fusion of nucleoli: a study using the activated mouse oocyte model. Lian HY; Jiao GZ; Wang HL; Tan XW; Wang TY; Zheng LL; Kong QQ; Tan JH Biol Reprod; 2014 Sep; 91(3):56. PubMed ID: 25061094 [TBL] [Abstract][Full Text] [Related]
2. Regulation of fusion of the nucleolar precursor bodies following activation of mouse oocytes: roles of the maturation-promoting factors and mitogen-activated protein kinases. Li JJ; Lian HY; Zhang SY; Cui W; Sui HS; Han D; Liu N; Tan JH Zygote; 2012 Aug; 20(3):291-303. PubMed ID: 21554769 [TBL] [Abstract][Full Text] [Related]
3. Changes in MPF and MAPK activities in porcine oocytes activated by different methods. Nanassy L; Lee K; Javor A; Machaty Z Theriogenology; 2007 Jul; 68(2):146-52. PubMed ID: 17524467 [TBL] [Abstract][Full Text] [Related]
4. De novo formation of nucleoli in developing mouse embryos originating from enucleolated zygotes. Kyogoku H; Fulka J; Wakayama T; Miyano T Development; 2014 Jun; 141(11):2255-9. PubMed ID: 24803589 [TBL] [Abstract][Full Text] [Related]
5. Dynamic interaction of formin proteins and cytoskeleton in mouse oocytes during meiotic maturation. Kwon S; Shin H; Lim HJ Mol Hum Reprod; 2011 May; 17(5):317-27. PubMed ID: 20971793 [TBL] [Abstract][Full Text] [Related]
6. Sister chromatid separation and the metaphase-anaphase transition in mouse oocytes. Fulka J; Moor RM; Fulka J Dev Biol; 1994 Oct; 165(2):410-7. PubMed ID: 7958409 [TBL] [Abstract][Full Text] [Related]
7. Nucleoli from growing oocytes inhibit the maturation of enucleolated, full-grown oocytes in the pig. Kyogoku H; Ogushi S; Miyano T; Fulka J Mol Reprod Dev; 2011 Jun; 78(6):426-35. PubMed ID: 21542050 [TBL] [Abstract][Full Text] [Related]
8. Enucleation of demecolcine-treated bovine oocytes in cytochalasin-free medium: mechanism investigation and practical improvement. Meng Q; Wu X; Bunch TD; White K; Sessions BR; Davies CJ; Rickords L; Li GP Cell Reprogram; 2011 Oct; 13(5):411-8. PubMed ID: 21740270 [TBL] [Abstract][Full Text] [Related]
9. The distribution and requirements of microtubules and microfilaments during fertilization and parthenogenesis in pig oocytes. Kim NH; Chung KS; Day BN J Reprod Fertil; 1997 Sep; 111(1):143-9. PubMed ID: 9370978 [TBL] [Abstract][Full Text] [Related]
10. Protein phosphatases control MAP kinase activation and microtubule organization during rat oocyte maturation. Zernicka-Goetz M; Verlhac MH; Géraud G; Kubiak JZ Eur J Cell Biol; 1997 Jan; 72(1):30-8. PubMed ID: 9013723 [TBL] [Abstract][Full Text] [Related]
11. Independent activation of MAP kinase and MPF during the initiation of meiotic maturation in pig oocytes. Ye J; Flint AP; Luck MR; Campbell KH Reproduction; 2003 May; 125(5):645-56. PubMed ID: 12713427 [TBL] [Abstract][Full Text] [Related]
12. Ribosomal RNA and nucleolar proteins from the oocyte are to some degree used for embryonic nucleolar formation in cattle and pig. Maddox-Hyttel P; Svarcova O; Laurincik J Theriogenology; 2007 Sep; 68 Suppl 1():S63-70. PubMed ID: 17466364 [TBL] [Abstract][Full Text] [Related]
13. Morphological and molecular markers are correlated with maturation-competence of human oocytes. Levi M; Ghetler Y; Shulman A; Shalgi R Hum Reprod; 2013 Sep; 28(9):2482-9. PubMed ID: 23787211 [TBL] [Abstract][Full Text] [Related]
14. Stabilization of actin filaments prevents germinal vesicle breakdown and affects microtubule organization in Xenopus oocytes. Okada I; Fujiki S; Iwase S; Abe H Cytoskeleton (Hoboken); 2012 May; 69(5):312-23. PubMed ID: 22422719 [TBL] [Abstract][Full Text] [Related]
15. Confocal microscopy and 3-D reconstruction of the cytoskeleton of Xenopus oocytes. Gard DL Microsc Res Tech; 1999 Mar; 44(6):388-414. PubMed ID: 10211674 [TBL] [Abstract][Full Text] [Related]
16. Sea urchin oocytes possess elaborate cortical arrays of microfilaments, microtubules, and intermediate filaments. Boyle JA; Ernst SG Dev Biol; 1989 Jul; 134(1):72-84. PubMed ID: 2471666 [TBL] [Abstract][Full Text] [Related]
17. MPF-induced breakdown of cytokeratin filament organization in the maturing Xenopus oocyte depends upon the translation of maternal mRNAs. Klymkowsky MW; Maynell LA Dev Biol; 1989 Aug; 134(2):479-85. PubMed ID: 2472987 [TBL] [Abstract][Full Text] [Related]
18. The organization and animal-vegetal asymmetry of cytokeratin filaments in stage VI Xenopus oocytes is dependent upon F-actin and microtubules. Gard DL; Cha BJ; King E Dev Biol; 1997 Apr; 184(1):95-114. PubMed ID: 9142987 [TBL] [Abstract][Full Text] [Related]
19. Changes in maturation-promoting activity in the cytoplasm of pig oocytes throughout maturation. Mattioli M; Galeati G; Bacci ML; Barboni B Mol Reprod Dev; 1991 Oct; 30(2):119-25. PubMed ID: 1954026 [TBL] [Abstract][Full Text] [Related]
20. Involvement of the cytoskeleton in the movement of cortical granules during oocyte maturation, and cortical granule anchoring in mouse eggs. Connors SA; Kanatsu-Shinohara M; Schultz RM; Kopf GS Dev Biol; 1998 Aug; 200(1):103-15. PubMed ID: 9698460 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]