These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 2506164)

  • 41. Effects of heat-, CaCl2- and ethanol-treatments on activation of Bacillus spores.
    Kim J; Foegeding PM
    J Appl Bacteriol; 1990 Sep; 69(3):414-20. PubMed ID: 2123174
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Temperature-induced changes in the sporicidal activity and chemical properties of glutaraldehyde.
    Thomas S; Russell AD
    Appl Microbiol; 1974 Sep; 28(3):331-5. PubMed ID: 4213869
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Characterization of individual spores of two biological insecticides, Bacillus thuringiensis and Lysinibacillus sphaericus, in response to glutaraldehyde using single-cell optical approaches.
    Chen H; Wang X; Li C; Xu X; Wang G
    Arch Microbiol; 2024 Apr; 206(5):227. PubMed ID: 38642141
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Analysis of damage due to moist heat treatment of spores of Bacillus subtilis.
    Coleman WH; Setlow P
    J Appl Microbiol; 2009 May; 106(5):1600-7. PubMed ID: 19226400
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mechanism of inactivation of Bacillus subtilis spores by high pressure CO
    Rao L; Zhao L; Wang Y; Chen F; Hu X; Setlow P; Liao X
    Food Microbiol; 2019 Sep; 82():36-45. PubMed ID: 31027794
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A comparison of chemically defined and complex media for the production of Bacillus subtilis spores having reproducible resistance and germination characteristics.
    Hodges NA; Melling J; Parker SJ
    J Pharm Pharmacol; 1980 Feb; 32(2):126-30. PubMed ID: 6103033
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Killing of spores of Bacillus subtilis by tert-butyl hydroperoxide plus a TAML activator.
    Paul M; Setlow B; Setlow P
    J Appl Microbiol; 2007 Apr; 102(4):954-62. PubMed ID: 17381738
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mechanisms of Bacillus subtilis spore killing by and resistance to an acidic Fe-EDTA-iodide-ethanol formulation.
    Shapiro MP; Setlow P
    J Appl Microbiol; 2006 Apr; 100(4):746-53. PubMed ID: 16553729
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effectiveness of four chemical solutions in eliminating Bacillus subtilis spores on gutta-percha cones.
    Siqueira JF; da Silva CH; Cerqueira M das D; Lopes HP; de Uzeda M
    Endod Dent Traumatol; 1998 Jun; 14(3):124-6. PubMed ID: 9863421
    [TBL] [Abstract][Full Text] [Related]  

  • 50. In vivo roles of the germination-specific lytic enzymes of Bacillus subtilis 168.
    Atrih A; Foster SJ
    Microbiology (Reading); 2001 Nov; 147(Pt 11):2925-32. PubMed ID: 11700343
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The combined effects of high pressure and nisin on germination and inactivation of Bacillus spores in milk.
    Black EP; Linton M; McCall RD; Curran W; Fitzgerald GF; Kelly AL; Patterson MF
    J Appl Microbiol; 2008 Jul; 105(1):78-87. PubMed ID: 18248377
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Quantitative analysis of polymyxin B released from polymyxin B-treated dormant spores of Bacillus subtilis and relationship between its permeability and inhibitory effect on outgrowth.
    Fujita-Ichikawa Y; Tochikubo K
    Microbiol Immunol; 1993; 37(12):935-41. PubMed ID: 8133799
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Slow leakage of Ca-dipicolinic acid from individual bacillus spores during initiation of spore germination.
    Wang S; Setlow P; Li YQ
    J Bacteriol; 2015 Mar; 197(6):1095-103. PubMed ID: 25583976
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Conditions suitable for the recovery of biocide-treated spores of Bacillus subtilis.
    Williams ND; Russell AD
    Microbios; 1993; 74(299):121-9. PubMed ID: 8361393
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Disappearance of the cooperative effect of glucose on L-alanine binding during heat activation of germination of Bacillus subtilis spores.
    Yasuda Y; Tochikubo K
    Microbiol Immunol; 1985; 29(10):1011-7. PubMed ID: 3935905
    [No Abstract]   [Full Text] [Related]  

  • 56. Resistance of spores and vegetative cells of Streptomyces thermovulgaris strain 127 and the glucose isomerase produced by them to temperature and glutaraldehyde.
    Djejeva G; Grigorova Y; Stoychev M
    Acta Microbiol Bulg; 1990; 25():8-15. PubMed ID: 2116716
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Use of Raman Spectroscopy and Phase-Contrast Microscopy To Characterize Cold Atmospheric Plasma Inactivation of Individual Bacterial Spores.
    Wang S; Doona CJ; Setlow P; Li YQ
    Appl Environ Microbiol; 2016 Oct; 82(19):5775-84. PubMed ID: 27422840
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The possible involvement of trypsin-like enzymes in germination of spores of Bacillus cereus T and Bacillus subtilis 168.
    Boschwitz H; Gofshtein-Gandman L; Halvorson HO; Keynan A; Milner Y
    J Gen Microbiol; 1991 May; 137(5):1145-53. PubMed ID: 1650815
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Triple fixation of Bacillus subtilis dormant spores.
    Kozuka S; Tochikubo K
    J Bacteriol; 1983 Oct; 156(1):409-13. PubMed ID: 6413496
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effects of minerals on resistance of Bacillus subtilis spores to heat and hydrostatic pressure.
    Igura N; Kamimura Y; Islam MS; Shimoda M; Hayakawa I
    Appl Environ Microbiol; 2003 Oct; 69(10):6307-10. PubMed ID: 14532097
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.