These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 25061720)

  • 21. Synthesis and anticancer activity of novel aza-artemisinin derivatives.
    Jana S; Iram S; Thomas J; Liekens S; Dehaen W
    Bioorg Med Chem; 2017 Jul; 25(14):3671-3676. PubMed ID: 28529044
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhanced delivery of artemisinin and its analogues to cancer cells by their adducts with human serum transferrin.
    Yang Y; Zhang X; Wang X; Zhao X; Ren T; Wang F; Yu B
    Int J Pharm; 2014 Jun; 467(1-2):113-22. PubMed ID: 24661944
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis, anticancer activity and QSAR study of 1,4-naphthoquinone derivatives.
    Prachayasittikul V; Pingaew R; Worachartcheewan A; Nantasenamat C; Prachayasittikul S; Ruchirawat S; Prachayasittikul V
    Eur J Med Chem; 2014 Sep; 84():247-63. PubMed ID: 25019480
    [TBL] [Abstract][Full Text] [Related]  

  • 24. QSAR Study of Artemisinin Analogues as Antimalarial Drugs by Neural Network and Replacement Method.
    Abbasitabar F; Zare-Shahabadi V
    Drug Res (Stuttg); 2017 Aug; 67(8):476-484. PubMed ID: 28561237
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Two-dimensional quantitative structure-activity relationship study of 1,4-naphthoquinone derivatives tested against HL-60 human promyelocytic leukaemia cells.
    Costa MCA; Ferreira MMC
    SAR QSAR Environ Res; 2017 Apr; 28(4):325-339. PubMed ID: 28490186
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A quantitative structure-activity relationship (QSAR) study of dermal absorption using theoretical molecular descriptors.
    Basak SC; Mills D; Mumtaz MM
    SAR QSAR Environ Res; 2007; 18(1-2):45-55. PubMed ID: 17365958
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mutagenicity, anticancer activity and blood brain barrier: similarity and dissimilarity of molecular alerts.
    Toropov AA; Toropova AP; Benfenati E; Salmona M
    Toxicol Mech Methods; 2018 Jun; 28(5):321-327. PubMed ID: 29281931
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Potential sonodynamic anticancer activities of artemether and liposome-encapsulated artemether.
    Chen HJ; Huang XR; Zhou XB; Zheng BY; Huang JD
    Chem Commun (Camb); 2015 Mar; 51(22):4681-4. PubMed ID: 25691357
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Exploring the novel heterocyclic derivatives as lead molecules for design and development of potent anticancer agents.
    Azad I; Nasibullah M; Khan T; Hassan F; Akhter Y
    J Mol Graph Model; 2018 May; 81():211-228. PubMed ID: 29609141
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis of novel ring-contracted artemisinin dimers with potent anticancer activities.
    Zhang N; Yu Z; Yang X; Hu P; He Y
    Eur J Med Chem; 2018 Apr; 150():829-840. PubMed ID: 29597166
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of QSAR models to predict and interpret the biological activity of artemisinin analogues.
    Guha R; Jurs PC
    J Chem Inf Comput Sci; 2004; 44(4):1440-9. PubMed ID: 15272852
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phenylpropiophenone derivatives as potential anticancer agents: synthesis, biological evaluation and quantitative structure-activity relationship study.
    Ivković BM; Nikolic K; Ilić BB; Žižak ŽS; Novaković RB; Čudina OA; Vladimirov SM
    Eur J Med Chem; 2013 May; 63():239-55. PubMed ID: 23501110
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis of novel S-linked dihydroartemisinin derivatives and evaluation of their anticancer activity.
    Gour R; Ahmad F; Prajapati SK; Giri SK; Lal Karna SK; Kartha KPR; Pokharel YR
    Eur J Med Chem; 2019 Sep; 178():552-570. PubMed ID: 31216504
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Discovery of artemisinin-glycolipid hybrids as anti-oral cancer agents.
    Ricci J; Kim M; Chung WY; Park KK; Jung M
    Chem Pharm Bull (Tokyo); 2011; 59(12):1471-5. PubMed ID: 22130368
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pharmacokinetic and toxicological profile of artemisinin compounds: an update.
    Medhi B; Patyar S; Rao RS; Byrav D S P; Prakash A
    Pharmacology; 2009; 84(6):323-32. PubMed ID: 19851082
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural optimization and biological evaluation for novel artemisinin derivatives against liver and ovarian cancers.
    Zhou Y; Li X; Chen K; Ba Q; Zhang X; Li J; Wang J; Wang H; Liu H
    Eur J Med Chem; 2021 Feb; 211():113000. PubMed ID: 33261896
    [TBL] [Abstract][Full Text] [Related]  

  • 37. QSAR of aminopyrido[2,3-d]pyrimidin-7-yl derivatives: anticancer drug design by computed descriptors.
    Nandi S; Bagchi MC
    J Enzyme Inhib Med Chem; 2009 Aug; 24(4):937-48. PubMed ID: 19555178
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular docking and 3-D-QSAR studies on the possible antimalarial mechanism of artemisinin analogues.
    Cheng F; Shen J; Luo X; Zhu W; Gu J; Ji R; Jiang H; Chen K
    Bioorg Med Chem; 2002 Sep; 10(9):2883-91. PubMed ID: 12110308
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Application of GA-MLR for QSAR Modeling of the Arylthioindole Class of Tubulin Polymerization Inhibitors as Anticancer Agents.
    Ahmadi S; Habibpour E
    Anticancer Agents Med Chem; 2017; 17(4):552-565. PubMed ID: 27528182
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis of a novel series of fluoroarene derivatives of artemisinin as potent antifungal and anticancer agent.
    Buragohain P; Surineni N; Barua NC; Bhuyan PD; Boruah P; Borah JC; Laisharm S; Moirangthem DS
    Bioorg Med Chem Lett; 2015 Aug; 25(16):3338-41. PubMed ID: 26099535
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.