BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 25061756)

  • 1. The sequential application of macroalgal biosorbents for the bioremediation of a complex industrial effluent.
    Kidgell JT; de Nys R; Paul NA; Roberts DA
    PLoS One; 2014; 9(7):e101309. PubMed ID: 25061756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioremediation of a complex industrial effluent by biosorbents derived from freshwater macroalgae.
    Kidgell JT; de Nys R; Hu Y; Paul NA; Roberts DA
    PLoS One; 2014; 9(2):e94706. PubMed ID: 24919058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous biosorption of selenium, arsenic and molybdenum with modified algal-based biochars.
    Johansson CL; Paul NA; de Nys R; Roberts DA
    J Environ Manage; 2016 Jan; 165():117-123. PubMed ID: 26413805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioremediation for coal-fired power stations using macroalgae.
    Roberts DA; Paul NA; Bird MI; de Nys R
    J Environ Manage; 2015 Apr; 153():25-32. PubMed ID: 25646673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From waste water treatment to land management: Conversion of aquatic biomass to biochar for soil amelioration and the fortification of crops with essential trace elements.
    Roberts DA; Paul NA; Cole AJ; de Nys R
    J Environ Manage; 2015 Jul; 157():60-8. PubMed ID: 25881153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth and metal bioconcentration by conspecific freshwater macroalgae cultured in industrial waste water.
    Ellison MB; de Nys R; Paul NA; Roberts DA
    PeerJ; 2014; 2():e401. PubMed ID: 24883258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sustainable sources of biomass for bioremediation of heavy metals in waste water derived from coal-fired power generation.
    Saunders RJ; Paul NA; Hu Y; de Nys R
    PLoS One; 2012; 7(5):e36470. PubMed ID: 22590550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The complexity of biosorption treatments for oxyanions in a multi-element mine effluent.
    Johansson CL; Paul NA; de Nys R; Roberts DA
    J Environ Manage; 2015 Mar; 151():386-92. PubMed ID: 25590609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar.
    Xu X; Cao X; Zhao L; Wang H; Yu H; Gao B
    Environ Sci Pollut Res Int; 2013 Jan; 20(1):358-68. PubMed ID: 22477163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of Heavy Metals and Metalloids by Amino-Modified Biochar Supporting Nanoscale Zero-Valent Iron.
    Yang J; Ma T; Li X; Tu J; Dang Z; Yang C
    J Environ Qual; 2018 Sep; 47(5):1196-1204. PubMed ID: 30272773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytoremediation of the coalmine effluent.
    Bharti S; Kumar Banerjee T
    Ecotoxicol Environ Saf; 2012 Jul; 81():36-42. PubMed ID: 22571948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochar- and phosphate-induced immobilization of heavy metals in contaminated soil and water: implication on simultaneous remediation of contaminated soil and groundwater.
    Liang Y; Cao X; Zhao L; Arellano E
    Environ Sci Pollut Res Int; 2014 Mar; 21(6):4665-74. PubMed ID: 24352548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tannery effluent treatments with mangrove fungi, grass root biomass, and biochar.
    Ameen F; Alsarraf MJ; Abalkhail T; Stephenson SL
    World J Microbiol Biotechnol; 2024 Jun; 40(8):249. PubMed ID: 38907753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polishing of painting process effluents through adsorption with biochar from winemaking residues.
    Carvalho FL; Pinto D; Schio RR; Dos Santos JP; Ketzer F; Silva LFO; Dotto GL
    Environ Sci Pollut Res Int; 2022 Sep; 29(44):66348-66358. PubMed ID: 35499731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosorption of heavy metals from industrial waste water by Geobacillus thermodenitrificans.
    Chatterjee SK; Bhattacharjee I; Chandra G
    J Hazard Mater; 2010 Mar; 175(1-3):117-25. PubMed ID: 19864059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heavy metal pollution due to coal washery effluent and its decontamination using a macrofungus, Pleurotus ostreatus.
    Vaseem H; Singh VK; Singh MP
    Ecotoxicol Environ Saf; 2017 Nov; 145():42-49. PubMed ID: 28704692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil.
    Lu K; Yang X; Gielen G; Bolan N; Ok YS; Niazi NK; Xu S; Yuan G; Chen X; Zhang X; Liu D; Song Z; Liu X; Wang H
    J Environ Manage; 2017 Jan; 186(Pt 2):285-292. PubMed ID: 27264699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arsenic removal from aqueous solutions and groundwater using agricultural biowastes-derived biosorbents and biochar: a column-scale investigation.
    Tabassum RA; Shahid M; Niazi NK; Dumat C; Zhang Y; Imran M; Bakhat HF; Hussain I; Khalid S
    Int J Phytoremediation; 2019; 21(6):509-518. PubMed ID: 30924354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased bioavailability of metals in two contrasting agricultural soils treated with waste wood-derived biochar and ash.
    Lucchini P; Quilliam RS; Deluca TH; Vamerali T; Jones DL
    Environ Sci Pollut Res Int; 2014 Mar; 21(5):3230-40. PubMed ID: 24217969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of organic pollutants on metal and As uptake by helophyte species and consequences for constructed wetlands design and management.
    Guittonny-Philippe A; Masotti V; Claeys-Bruno M; Malleret L; Coulomb B; Prudent P; Höhener P; Petit MÉ; Sergent M; laffont-Schwob I
    Water Res; 2015 Jan; 68():328-41. PubMed ID: 25462740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.