BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 2506178)

  • 1. Substrate channeling of NADH and binding of dehydrogenases to complex I.
    Fukushima T; Decker RV; Anderson WM; Spivey HO
    J Biol Chem; 1989 Oct; 264(28):16483-8. PubMed ID: 2506178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complex I binds several mitochondrial NAD-coupled dehydrogenases.
    Sumegi B; Srere PA
    J Biol Chem; 1984 Dec; 259(24):15040-5. PubMed ID: 6439716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction between NAD-dependent isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase complex, and NADH:ubiquinone oxidoreductase.
    Porpaczy Z; Sumegi B; Alkonyi I
    J Biol Chem; 1987 Jul; 262(20):9509-14. PubMed ID: 3110160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic advantages of hetero-enzyme complexes with glutamate dehydrogenase and the alpha-ketoglutarate dehydrogenase complex.
    Fahien LA; MacDonald MJ; Teller JK; Fibich B; Fahien CM
    J Biol Chem; 1989 Jul; 264(21):12303-12. PubMed ID: 2745445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reactive oxygen species production in cardiac mitochondria after complex I inhibition: Modulation by substrate-dependent regulation of the NADH/NAD(+) ratio.
    Korge P; Calmettes G; Weiss JN
    Free Radic Biol Med; 2016 Jul; 96():22-33. PubMed ID: 27068062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of malate dehydrogenase activity by glutamate, citrate, alpha-ketoglutarate, and multienzyme interaction.
    Fahien LA; Kmiotek EH; MacDonald MJ; Fibich B; Mandic M
    J Biol Chem; 1988 Aug; 263(22):10687-97. PubMed ID: 2899080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binding of malate dehydrogenase and NADH channelling to complex I.
    Ovádi J; Huang Y; Spivey HO
    J Mol Recognit; 1994 Dec; 7(4):265-72. PubMed ID: 7734152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Malyl-CoA formation in the NAD-, CoASH-, and alpha-ketoglutarate dehydrogenase-dependent oxidation of 2-keto-4-hydroxyglutarate. Possible coupled role of this reaction with 2-keto-4-hydroxyglutarate aldolase activity in a pyruvate-catalyzed cyclic oxidation of glyoxylate.
    Gupta SC; Dekker EE
    J Biol Chem; 1984 Aug; 259(16):10012-9. PubMed ID: 6381479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of micromolar Ca2+ on NADH inhibition of bovine kidney alpha-ketoglutarate dehydrogenase complex and possible role of Ca2+ in signal amplification.
    Lawlis VB; Roche TE
    Mol Cell Biochem; 1980 Nov; 32(3):147-52. PubMed ID: 7464825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of bovine kidney alpha-ketoglutarate dehydrogenase complex by reduced nicotinamide adenine dinucleotide in the presence or absence of calcium ion and effect of adenosine 5'-diphosphate on reduced nicotinamide adenine dinucleotide inhibition.
    Lawlis VB; Roche TE
    Biochemistry; 1981 Apr; 20(9):2519-24. PubMed ID: 6894547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Action of surfactants on porcine heart malate dehydrogenase isoenzymes and a simple method for the differential assay of these isoenzymes.
    Smith K; Sundaram TK
    Biochim Biophys Acta; 1986 Oct; 884(1):109-18. PubMed ID: 3768404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the mechanism of rotenone-insensitive reduction of quinones by mitochondrial NADH:ubiquinone reductase. The high affinity binding of NAD+ and NADH to the reduced enzyme form.
    Cénas NK; Bironaité DA; Kulys JJ
    FEBS Lett; 1991 Jun; 284(2):192-4. PubMed ID: 1905649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Reaction of complex I of the mitochondrial electron transport chain with artificial oxidizers].
    Chenas NK
    Ukr Biokhim Zh (1978); 1989; 61(5):23-9. PubMed ID: 2511653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Absence of NADH channeling in coupled reaction of mitochondrial malate dehydrogenase and complex I in alamethicin-permeabilized rat liver mitochondria.
    Kotlyar AB; Maklashina E; Cecchini G
    Biochem Biophys Res Commun; 2004 Jun; 318(4):987-91. PubMed ID: 15147970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of mitochondrial malate dehydrogenase. Evidence for an allosteric citrate-binding site.
    Mullinax TR; Mock JN; McEvily AJ; Harrison JH
    J Biol Chem; 1982 Nov; 257(22):13233-9. PubMed ID: 7142142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brain alpha-ketoglutarate dehydrogenase complex: kinetic properties, regional distribution, and effects of inhibitors.
    Lai JC; Cooper AJ
    J Neurochem; 1986 Nov; 47(5):1376-86. PubMed ID: 3760866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Regulation of alpha-ketoglutarate dehydrogenase complex from pigeon breast muscle].
    Gomazkova VS; Krasovskaia OE
    Biokhimiia; 1979 Jun; 44(6):1126-36. PubMed ID: 223676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hysteretic interaction of NADH and Mg2+ with mammalian NADH:CoQ reductase from beef heart.
    Tushurashvili PR; Dekanosidze NZ; Inasaridze NP; Kekelidze TN; Tsartsidze MA; Lomsadze BA
    FEBS Lett; 1989 Feb; 244(2):268-70. PubMed ID: 2493393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substrate inhibition of the mitochondrial and cytoplasmic malate dehydrogenases.
    Bernstein LH; Grisham MB; Cole KD; Everse J
    J Biol Chem; 1978 Dec; 253(24):8697-701. PubMed ID: 214429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Diaphorase reactions of lipoamide dehydrogenases from the adrenal ketoglutarate dehydrogenase complex].
    Chenas NK; Butkus AA; Kulis IuIu
    Biokhimiia; 1985 Jun; 50(6):1018-23. PubMed ID: 3839697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.