These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 25061850)
1. Transformation of human cathelicidin LL-37 into selective, stable, and potent antimicrobial compounds. Wang G; Hanke ML; Mishra B; Lushnikova T; Heim CE; Chittezham Thomas V; Bayles KW; Kielian T ACS Chem Biol; 2014 Sep; 9(9):1997-2002. PubMed ID: 25061850 [TBL] [Abstract][Full Text] [Related]
2. Titanium surfaces immobilized with the major antimicrobial fragment FK-16 of human cathelicidin LL-37 are potent against multiple antibiotic-resistant bacteria. Mishra B; Wang G Biofouling; 2017 Aug; 33(7):544-555. PubMed ID: 28675109 [TBL] [Abstract][Full Text] [Related]
3. Modulation of antimicrobial potency of human cathelicidin peptides against the ESKAPE pathogens and in vivo efficacy in a murine catheter-associated biofilm model. Narayana JL; Mishra B; Lushnikova T; Golla RM; Wang G Biochim Biophys Acta Biomembr; 2019 Sep; 1861(9):1592-1602. PubMed ID: 31319057 [TBL] [Abstract][Full Text] [Related]
4. Database screening and in vivo efficacy of antimicrobial peptides against methicillin-resistant Staphylococcus aureus USA300. Menousek J; Mishra B; Hanke ML; Heim CE; Kielian T; Wang G Int J Antimicrob Agents; 2012 May; 39(5):402-6. PubMed ID: 22445495 [TBL] [Abstract][Full Text] [Related]
5. Arginine-lysine positional swap of the LL-37 peptides reveals evolutional advantages of the native sequence and leads to bacterial probes. Wang X; Junior JCB; Mishra B; Lushnikova T; Epand RM; Wang G Biochim Biophys Acta Biomembr; 2017 Aug; 1859(8):1350-1361. PubMed ID: 28450045 [TBL] [Abstract][Full Text] [Related]
6. Cationic antimicrobial peptides: alternatives and/or adjuvants to antibiotics active against methicillin-resistant Staphylococcus aureus and multidrug-resistant Pseudomonas aeruginosa. Geitani R; Ayoub Moubareck C; Touqui L; Karam Sarkis D BMC Microbiol; 2019 Mar; 19(1):54. PubMed ID: 30849936 [TBL] [Abstract][Full Text] [Related]
7. Prokaryotic selectivity and LPS-neutralizing activity of short antimicrobial peptides designed from the human antimicrobial peptide LL-37. Nan YH; Bang JK; Jacob B; Park IS; Shin SY Peptides; 2012 Jun; 35(2):239-47. PubMed ID: 22521196 [TBL] [Abstract][Full Text] [Related]
8. Highly selective end-tagged antimicrobial peptides derived from PRELP. Malmsten M; Kasetty G; Pasupuleti M; Alenfall J; Schmidtchen A PLoS One; 2011 Jan; 6(1):e16400. PubMed ID: 21298015 [TBL] [Abstract][Full Text] [Related]
9. Ab initio design of potent anti-MRSA peptides based on database filtering technology. Mishra B; Wang G J Am Chem Soc; 2012 Aug; 134(30):12426-9. PubMed ID: 22803960 [TBL] [Abstract][Full Text] [Related]
10. Norfloxacin salts of carboxylic acids curtail planktonic and biofilm mode of growth in ESKAPE pathogens. Lowrence RC; Ramakrishnan A; Sundaramoorthy NS; Shyam A; Mohan V; Subbarao HMV; Ulaganathan V; Raman T; Solomon A; Nagarajan S J Appl Microbiol; 2018 Feb; 124(2):408-422. PubMed ID: 29178633 [TBL] [Abstract][Full Text] [Related]
12. Enhanced Antimicrobial Screening Sensitivity Enabled the Identification of an Ultrashort Peptide KR-8 for Engineering of LL-37mini to Combat Drug-Resistant Pathogens. Mechesso AF; Su Y; Xie J; Wang G ACS Infect Dis; 2023 Nov; 9(11):2215-2225. PubMed ID: 37812567 [TBL] [Abstract][Full Text] [Related]
13. Spectral and biological evaluation of a synthetic antimicrobial peptide derived from 1-aminocyclohexane carboxylic acid. Abercrombie JJ; Leung KP; Chai H; Hicks RP Bioorg Med Chem; 2015 Mar; 23(6):1341-7. PubMed ID: 25684423 [TBL] [Abstract][Full Text] [Related]
14. A Small-Molecule Inhibitor of Huang Y; Alumasa JN; Callaghan LT; Baugh RS; Rae CD; Keiler KC; McGillivray SM Antimicrob Agents Chemother; 2019 Apr; 63(4):. PubMed ID: 30917982 [No Abstract] [Full Text] [Related]
15. Evaluation of antimicrobial peptide LL-37 for treatment of Staphylococcus aureus biofilm on titanium plate. Wei J; Cao X; Qian J; Liu Z; Wang X; Su Q; Wang Y; Xie R; Li X Medicine (Baltimore); 2021 Nov; 100(44):e27426. PubMed ID: 34871207 [TBL] [Abstract][Full Text] [Related]
16. Nanofiber Dressings Topically Delivering Molecularly Engineered Human Cathelicidin Peptides for the Treatment of Biofilms in Chronic Wounds. Su Y; Wang H; Mishra B; Lakshmaiah Narayana J; Jiang J; Reilly DA; Hollins RR; Carlson MA; Wang G; Xie J Mol Pharm; 2019 May; 16(5):2011-2020. PubMed ID: 30916573 [TBL] [Abstract][Full Text] [Related]
17. PepBiotics, novel cathelicidin-inspired antimicrobials to fight pulmonary bacterial infections. van Eijk M; van Dijk A; van der Ent CK; Arets HGM; Breukink E; van Os N; Adrichem R; van der Water S; Lino Gómez R; Kristensen M; Hessing M; Jekhmane S; Weingarth M; Veldhuizen RAW; Veldhuizen EJA; Haagsman HP Biochim Biophys Acta Gen Subj; 2021 Sep; 1865(9):129951. PubMed ID: 34147544 [TBL] [Abstract][Full Text] [Related]
19. Design of Bactericidal Peptides Against Escherichia coli O157:H7, Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus. Cruz J; Rondon-Villarreal P; Torres RG; Urquiza M; Guzman F; Alvarez C; Abengozar MA; Sierra DA; Rivas L; Fernandez-Lafuente R; Ortiz CC Med Chem; 2018; 14(7):741-752. PubMed ID: 29737262 [TBL] [Abstract][Full Text] [Related]
20. Decoding the functional roles of cationic side chains of the major antimicrobial region of human cathelicidin LL-37. Wang G; Epand RF; Mishra B; Lushnikova T; Thomas VC; Bayles KW; Epand RM Antimicrob Agents Chemother; 2012 Feb; 56(2):845-56. PubMed ID: 22083479 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]