These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 25061969)

  • 1. Bioengineered vaults: self-assembling protein shell-lipophilic core nanoparticles for drug delivery.
    Buehler DC; Marsden MD; Shen S; Toso DB; Wu X; Loo JA; Zhou ZH; Kickhoefer VA; Wender PA; Zack JA; Rome LH
    ACS Nano; 2014 Aug; 8(8):7723-32. PubMed ID: 25061969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vaults engineered for hydrophobic drug delivery.
    Buehler DC; Toso DB; Kickhoefer VA; Zhou ZH; Rome LH
    Small; 2011 May; 7(10):1432-9. PubMed ID: 21506266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vault Nanoparticles: Chemical Modifications for Imaging and Enhanced Delivery.
    Benner NL; Zang X; Buehler DC; Kickhoefer VA; Rome ME; Rome LH; Wender PA
    ACS Nano; 2017 Jan; 11(1):872-881. PubMed ID: 28029784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vaults are dynamically unconstrained cytoplasmic nanoparticles capable of half vault exchange.
    Yang J; Kickhoefer VA; Ng BC; Gopal A; Bentolila LA; John S; Tolbert SH; Rome LH
    ACS Nano; 2010 Dec; 4(12):7229-40. PubMed ID: 21121616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vault nanoparticles engineered with the protein transduction domain, TAT48, enhances cellular uptake.
    Yang J; Srinivasan A; Sun Y; Mrazek J; Shu Z; Kickhoefer VA; Rome LH
    Integr Biol (Camb); 2013 Jan; 5(1):151-8. PubMed ID: 22785558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immobilization of recombinant vault nanoparticles on solid substrates.
    Xia Y; Ramgopal Y; Li H; Shang L; Srinivas P; Kickhoefer VA; Rome LH; Preiser PR; Boey F; Zhang H; Venkatraman SS
    ACS Nano; 2010 Mar; 4(3):1417-24. PubMed ID: 20146454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural stability of vault particles.
    Esfandiary R; Kickhoefer VA; Rome LH; Joshi SB; Middaugh CR
    J Pharm Sci; 2009 Apr; 98(4):1376-86. PubMed ID: 18683860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The vault exterior shell is a dynamic structure that allows incorporation of vault-associated proteins into its interior.
    Poderycki MJ; Kickhoefer VA; Kaddis CS; Raval-Fernandes S; Johansson E; Zink JI; Loo JA; Rome LH
    Biochemistry; 2006 Oct; 45(39):12184-93. PubMed ID: 17002318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeted vault nanoparticles engineered with an endosomolytic peptide deliver biomolecules to the cytoplasm.
    Han M; Kickhoefer VA; Nemerow GR; Rome LH
    ACS Nano; 2011 Aug; 5(8):6128-37. PubMed ID: 21740042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vault nanoparticles containing an adenovirus-derived membrane lytic protein facilitate toxin and gene transfer.
    Lai CY; Wiethoff CM; Kickhoefer VA; Rome LH; Nemerow GR
    ACS Nano; 2009 Mar; 3(3):691-9. PubMed ID: 19226129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Utilization of a protein "shuttle" to load vault nanocapsules with gold probes and proteins.
    Goldsmith LE; Pupols M; Kickhoefer VA; Rome LH; Monbouquette HG
    ACS Nano; 2009 Oct; 3(10):3175-83. PubMed ID: 19775119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of the vault particle as a platform technology.
    Rome LH; Kickhoefer VA
    ACS Nano; 2013 Feb; 7(2):889-902. PubMed ID: 23267674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vault Nanoparticles Packaged with Enzymes as an Efficient Pollutant Biodegradation Technology.
    Wang M; Abad D; Kickhoefer VA; Rome LH; Mahendra S
    ACS Nano; 2015 Nov; 9(11):10931-40. PubMed ID: 26493711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering of vault nanocapsules with enzymatic and fluorescent properties.
    Kickhoefer VA; Garcia Y; Mikyas Y; Johansson E; Zhou JC; Raval-Fernandes S; Minoofar P; Zink JI; Dunn B; Stewart PL; Rome LH
    Proc Natl Acad Sci U S A; 2005 Mar; 102(12):4348-52. PubMed ID: 15753293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Draft crystal structure of the vault shell at 9-A resolution.
    Anderson DH; Kickhoefer VA; Sievers SA; Rome LH; Eisenberg D
    PLoS Biol; 2007 Nov; 5(11):e318. PubMed ID: 18044992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical stability and reversible fracture of vault particles.
    Llauró A; Guerra P; Irigoyen N; Rodríguez JF; Verdaguer N; de Pablo PJ
    Biophys J; 2014 Feb; 106(3):687-95. PubMed ID: 24507609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cryoelectron microscopy imaging of recombinant and tissue derived vaults: localization of the MVP N termini and VPARP.
    Mikyas Y; Makabi M; Raval-Fernandes S; Harrington L; Kickhoefer VA; Rome LH; Stewart PL
    J Mol Biol; 2004 Nov; 344(1):91-105. PubMed ID: 15504404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Latest Advances in the Development of Eukaryotic Vaults as Targeted Drug Delivery Systems.
    Muñoz-Juan A; Carreño A; Mendoza R; Corchero JL
    Pharmaceutics; 2019 Jun; 11(7):. PubMed ID: 31261673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeting vault nanoparticles to specific cell surface receptors.
    Kickhoefer VA; Han M; Raval-Fernandes S; Poderycki MJ; Moniz RJ; Vaccari D; Silvestry M; Stewart PL; Kelly KA; Rome LH
    ACS Nano; 2009 Jan; 3(1):27-36. PubMed ID: 19206245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. All-in-one biofabrication and loading of recombinant vaults in human cells.
    Martín F; Carreño A; Mendoza R; Caruana P; Rodriguez F; Bravo M; Benito A; Ferrer-Miralles N; Céspedes MV; Corchero JL
    Biofabrication; 2022 Mar; 14(2):. PubMed ID: 35203066
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.