These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 25062017)

  • 1. Local order in the unfolded state: conformational biases and nearest neighbor interactions.
    Toal S; Schweitzer-Stenner R
    Biomolecules; 2014 Jul; 4(3):725-73. PubMed ID: 25062017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction and comparison of the statistical coil states of unfolded and intrinsically disordered proteins from nearest-neighbor corrected conformational propensities of short peptides.
    Schweitzer-Stenner R; Toal SE
    Mol Biosyst; 2016 Oct; 12(11):3294-3306. PubMed ID: 27545097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational propensities and residual structures in unfolded peptides and proteins.
    Schweitzer-Stenner R
    Mol Biosyst; 2012 Jan; 8(1):122-33. PubMed ID: 21879108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Randomizing the unfolded state of peptides (and proteins) by nearest neighbor interactions between unlike residues.
    Toal SE; Kubatova N; Richter C; Linhard V; Schwalbe H; Schweitzer-Stenner R
    Chemistry; 2015 Mar; 21(13):5173-92. PubMed ID: 25728043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Randomizing of Oligopeptide Conformations by Nearest Neighbor Interactions between Amino Acid Residues.
    Schweitzer-Stenner R; Milorey B; Schwalbe H
    Biomolecules; 2022 May; 12(5):. PubMed ID: 35625612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring Nearest Neighbor Interactions and Their Influence on the Gibbs Energy Landscape of Unfolded Proteins and Peptides.
    Schweitzer-Stenner R
    Int J Mol Sci; 2022 May; 23(10):. PubMed ID: 35628453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ionized trilysine: a model system for understanding the nonrandom structure of poly-L-lysine and lysine-containing motifs in proteins.
    Verbaro DJ; Mathieu D; Toal SE; Schwalbe H; Schweitzer-Stenner R
    J Phys Chem B; 2012 Jul; 116(28):8084-94. PubMed ID: 22712805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The relevance of short peptides for an understanding of unfolded and intrinsically disordered proteins.
    Schweitzer-Stenner R
    Phys Chem Chem Phys; 2023 May; 25(17):11908-11933. PubMed ID: 37096579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Helix, sheet, and polyproline II frequencies and strong nearest neighbor effects in a restricted coil library.
    Jha AK; Colubri A; Zaman MH; Koide S; Sosnick TR; Freed KF
    Biochemistry; 2005 Jul; 44(28):9691-702. PubMed ID: 16008354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. pH-Independence of trialanine and the effects of termini blocking in short peptides: a combined vibrational, NMR, UVCD, and molecular dynamics study.
    Toal S; Meral D; Verbaro D; Urbanc B; Schweitzer-Stenner R
    J Phys Chem B; 2013 Apr; 117(14):3689-706. PubMed ID: 23448349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of enthalpy-entropy compensation interactions in determining the conformational propensities of amino acid residues in unfolded peptides.
    Toal SE; Verbaro DJ; Schweitzer-Stenner R
    J Phys Chem B; 2014 Feb; 118(5):1309-18. PubMed ID: 24423055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Triaspartate: a model system for conformationally flexible DDD motifs in proteins.
    Duitch L; Toal S; Measey TJ; Schweitzer-Stenner R
    J Phys Chem B; 2012 May; 116(17):5160-71. PubMed ID: 22435395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Entropy reduction in unfolded peptides (and proteins) due to conformational preferences of amino acid residues.
    Schweitzer-Stenner R; Toal SE
    Phys Chem Chem Phys; 2014 Nov; 16(41):22527-36. PubMed ID: 25227444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repeating Aspartic Acid Residues Prefer Turn-like Conformations in the Unfolded State: Implications for Early Protein Folding.
    Milorey B; Schwalbe H; O'Neill N; Schweitzer-Stenner R
    J Phys Chem B; 2021 Oct; 125(41):11392-11407. PubMed ID: 34619031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anticooperative Nearest-Neighbor Interactions between Residues in Unfolded Peptides and Proteins.
    Schweitzer-Stenner R; Toal SE
    Biophys J; 2018 Mar; 114(5):1046-1057. PubMed ID: 29539392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simple model for polyproline II structure in unfolded states of alanine-based peptides.
    Pappu RV; Rose GD
    Protein Sci; 2002 Oct; 11(10):2437-55. PubMed ID: 12237465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amino acid conformational preferences and solvation of polar backbone atoms in peptides and proteins.
    Avbelj F
    J Mol Biol; 2000 Jul; 300(5):1335-59. PubMed ID: 10903873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational propensities of protein folding intermediates: distribution of species in the 1S, 2S, and 3S ensembles of the [C40A,C95A] mutant of bovine pancreatic ribonuclease A.
    Wedemeyer WJ; Xu X; Welker E; Scheraga HA
    Biochemistry; 2002 Feb; 41(5):1483-91. PubMed ID: 11814341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unfolded protein ensembles, folding trajectories, and refolding rate prediction.
    Das A; Sin BK; Mohazab AR; Plotkin SS
    J Chem Phys; 2013 Sep; 139(12):121925. PubMed ID: 24089737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational propensities of intrinsically disordered proteins from NMR chemical shifts.
    Kragelj J; Ozenne V; Blackledge M; Jensen MR
    Chemphyschem; 2013 Sep; 14(13):3034-45. PubMed ID: 23794453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.