These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 25062030)

  • 1. Microcontact peeling as a new method for cell micropatterning.
    Yokoyama S; Matsui TS; Deguchi S
    PLoS One; 2014; 9(7):e102735. PubMed ID: 25062030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microcontact Peeling: A Cell Micropatterning Technique for Circumventing Direct Adsorption of Proteins to Hydrophobic PDMS.
    Yokoyama S; Matsui TS; Deguchi S
    Curr Protoc Cell Biol; 2017 Jun; 75():10.21.1-10.21.8. PubMed ID: 28627756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micropatterning of cells on electron-irradiated poly(dimethylsiloxane) surface.
    Lee EJ; Hwang IT; Jung CH; Kwon HJ; Choi JH; Hur MG; Cho SO; Shin K
    J Biomed Nanotechnol; 2013 Mar; 9(3):461-6. PubMed ID: 23621002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. UV-defined flat PDMS stamps suitable for microcontact printing.
    Xue CY; Chin SY; Khan SA; Yang KL
    Langmuir; 2010 Mar; 26(5):3739-43. PubMed ID: 19810720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein patterning by microcontact printing using pyramidal PDMS stamps.
    Filipponi L; Livingston P; Kašpar O; Tokárová V; Nicolau DV
    Biomed Microdevices; 2016 Feb; 18(1):9. PubMed ID: 26782964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shaping Metallic Nanolattices: Design by Microcontact Printing from Wrinkled Stamps.
    Wang X; Sperling M; Reifarth M; Böker A
    Small; 2020 Mar; 16(11):e1906721. PubMed ID: 32091182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poly(dimethylsiloxane) contamination in microcontact printing and its influence on patterning oligonucleotides.
    Thibault C; Séverac C; Mingotaud AF; Vieu C; Mauzac M
    Langmuir; 2007 Oct; 23(21):10706-14. PubMed ID: 17803329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly(dimethyl siloxane) surface modification by low pressure plasma to improve its characteristics towards biomedical applications.
    Pinto S; Alves P; Matos CM; Santos AC; Rodrigues LR; Teixeira JA; Gil MH
    Colloids Surf B Biointerfaces; 2010 Nov; 81(1):20-6. PubMed ID: 20638249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aptamer-Based Gold Nanoparticles-PDMS Composite Stamps as a Platform for Micro-Contact Printing.
    Abbasi AD; Hussain Z; Yang KL
    Biosensors (Basel); 2022 Nov; 12(12):. PubMed ID: 36551034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile endothelial cell micropatterning induced by reactive oxygen species on polydimethylsiloxane substrates.
    Choi JS; Kim DH; Seo TS
    Biomaterials; 2016 Apr; 84():315-322. PubMed ID: 26852296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-density fabrication of normally closed microfluidic valves by patterned deactivation of oxidized polydimethylsiloxane.
    Mosadegh B; Tavana H; Lesher-Perez SC; Takayama S
    Lab Chip; 2011 Feb; 11(4):738-42. PubMed ID: 21132212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Micro-patterned cell-sheets fabricated with stamping-force-controlled micro-contact printing.
    Tanaka N; Ota H; Fukumori K; Miyake J; Yamato M; Okano T
    Biomaterials; 2014 Dec; 35(37):9802-9810. PubMed ID: 25239040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrophobic surface patterning with soft, wax-infused micro-stamps.
    Torabi S; Cai Z; Pham JT; Trinkle CA
    J Colloid Interface Sci; 2022 Jun; 615():494-500. PubMed ID: 35150957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxygen plasma-treatment effects on Si transfer.
    Langowski BA; Uhrich KE
    Langmuir; 2005 Jul; 21(14):6366-72. PubMed ID: 15982043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of polydimethylsiloxane substrates with tunable elastic modulus to study cell mechanobiology in muscle and nerve.
    Palchesko RN; Zhang L; Sun Y; Feinberg AW
    PLoS One; 2012; 7(12):e51499. PubMed ID: 23240031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrophilic elastomers for microcontact printing of polar inks.
    Trimbach DC; Al-Hussein M; de Jeu WH; Decré M; Broer DJ; Bastiaansen CW
    Langmuir; 2004 May; 20(11):4738-42. PubMed ID: 15969191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patterning Hydrophobic Surfaces by Negative Microcontact Printing and Its Applications.
    Wu H; Wu L; Zhou X; Liu B; Zheng B
    Small; 2018 Sep; 14(38):e1802128. PubMed ID: 30133159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface modification of PDMS by surface-initiated atom transfer radical polymerization of water-soluble dendronized PEG methacrylate.
    Zhang Z; Wang J; Tu Q; Nie N; Sha J; Liu W; Liu R; Zhang Y; Wang J
    Colloids Surf B Biointerfaces; 2011 Nov; 88(1):85-92. PubMed ID: 21752608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct rapid prototyping of PDMS from a photomask film for micropatterning of biomolecules and cells.
    Hwang H; Kang G; Yeon JH; Nam Y; Park JK
    Lab Chip; 2009 Jan; 9(1):167-70. PubMed ID: 19209351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multifunctional self-assembled monolayers via microcontact printing and degas-driven flow guided patterning.
    Lee SH; Rho WY; Park SJ; Kim J; Kwon OS; Jun BH
    Sci Rep; 2018 Nov; 8(1):16763. PubMed ID: 30425325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.