These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1349 related articles for article (PubMed ID: 25062670)
1. Evaluation of adenoviral vascular endothelial growth factor-activated chitosan/hydroxyapatite scaffold for engineering vascularized bone tissue using human osteoblasts: In vitro and in vivo studies. Koç A; Finkenzeller G; Elçin AE; Stark GB; Elçin YM J Biomater Appl; 2014 Nov; 29(5):748-60. PubMed ID: 25062670 [TBL] [Abstract][Full Text] [Related]
2. [A study on nano-hydroxyapatite-chitosan scaffold for bone tissue engineering]. Wang X; Liu L; Zhang Q Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Feb; 21(2):120-4. PubMed ID: 17357456 [TBL] [Abstract][Full Text] [Related]
3. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells. Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410 [TBL] [Abstract][Full Text] [Related]
4. Preparation and characterization of bionic bone structure chitosan/hydroxyapatite scaffold for bone tissue engineering. Zhang J; Nie J; Zhang Q; Li Y; Wang Z; Hu Q J Biomater Sci Polym Ed; 2014; 25(1):61-74. PubMed ID: 24053536 [TBL] [Abstract][Full Text] [Related]
5. Biocomposite scaffolds for bone regeneration: Role of chitosan and hydroxyapatite within poly-3-hydroxybutyrate-co-3-hydroxyvalerate on mechanical properties and in vitro evaluation. Zhang S; Prabhakaran MP; Qin X; Ramakrishna S J Mech Behav Biomed Mater; 2015 Nov; 51():88-98. PubMed ID: 26232670 [TBL] [Abstract][Full Text] [Related]
6. Development of gelatin-chitosan-hydroxyapatite based bioactive bone scaffold with controlled pore size and mechanical strength. Maji K; Dasgupta S; Kundu B; Bissoyi A J Biomater Sci Polym Ed; 2015; 26(16):1190-209. PubMed ID: 26335156 [TBL] [Abstract][Full Text] [Related]
7. Acceleration of segmental bone regeneration in a rabbit model by strontium-doped calcium polyphosphate scaffold through stimulating VEGF and bFGF secretion from osteoblasts. Gu Z; Zhang X; Li L; Wang Q; Yu X; Feng T Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):274-81. PubMed ID: 25428072 [TBL] [Abstract][Full Text] [Related]
8. Controlled release of vascular endothelial growth factor from spray-dried alginate microparticles in collagen-hydroxyapatite scaffolds for promoting vascularization and bone repair. Quinlan E; López-Noriega A; Thompson EM; Hibbitts A; Cryan SA; O'Brien FJ J Tissue Eng Regen Med; 2017 Apr; 11(4):1097-1109. PubMed ID: 25783558 [TBL] [Abstract][Full Text] [Related]
9. Synthesis of the New-Type Vascular Endothelial Growth Factor-Silk Fibroin-Chitosan Three-Dimensional Scaffolds for Bone Tissue Engineering and In Vitro Evaluation. Tong S; Xu DP; Liu ZM; Du Y; Wang XK J Craniofac Surg; 2016 Mar; 27(2):509-15. PubMed ID: 26890455 [TBL] [Abstract][Full Text] [Related]
15. Improved tissue-engineered bone regeneration by endothelial cell mediated vascularization. Yu H; VandeVord PJ; Mao L; Matthew HW; Wooley PH; Yang SY Biomaterials; 2009 Feb; 30(4):508-17. PubMed ID: 18973938 [TBL] [Abstract][Full Text] [Related]
16. In vivo evaluation of porous hydroxyapatite/chitosan-alginate composite scaffolds for bone tissue engineering. Jin HH; Kim DH; Kim TW; Shin KK; Jung JS; Park HC; Yoon SY Int J Biol Macromol; 2012 Dec; 51(5):1079-85. PubMed ID: 22959955 [TBL] [Abstract][Full Text] [Related]
17. Translating the role of osteogenic-angiogenic coupling in bone formation: Highly efficient chitosan-pDNA activated scaffolds can accelerate bone regeneration in critical-sized bone defects. Raftery RM; Mencía Castaño I; Chen G; Cavanagh B; Quinn B; Curtin CM; Cryan SA; O'Brien FJ Biomaterials; 2017 Dec; 149():116-127. PubMed ID: 29024837 [TBL] [Abstract][Full Text] [Related]
18. Chitosan/hydroxyapatite (HA)/hydroxypropylmethyl cellulose (HPMC) spongy scaffolds-synthesis and evaluation as potential alveolar bone substitutes. Iqbal H; Ali M; Zeeshan R; Mutahir Z; Iqbal F; Nawaz MAH; Shahzadi L; Chaudhry AA; Yar M; Luan S; Khan AF; Rehman IU Colloids Surf B Biointerfaces; 2017 Dec; 160():553-563. PubMed ID: 29024920 [TBL] [Abstract][Full Text] [Related]
20. Preparation and characterization of nano-sized hydroxyapatite/alginate/chitosan composite scaffolds for bone tissue engineering. Kim HL; Jung GY; Yoon JH; Han JS; Park YJ; Kim DG; Zhang M; Kim DJ Mater Sci Eng C Mater Biol Appl; 2015 Sep; 54():20-5. PubMed ID: 26046263 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]