These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 25062692)
1. Direct evidence for a magnetic f-electron-mediated pairing mechanism of heavy-fermion superconductivity in CeCoIn5. Van Dyke JS; Massee F; Allan MP; Davis JC; Petrovic C; Morr DK Proc Natl Acad Sci U S A; 2014 Aug; 111(32):11663-7. PubMed ID: 25062692 [TBL] [Abstract][Full Text] [Related]
2. Emergence of superconductivity in heavy-electron materials. Yang YF; Pines D Proc Natl Acad Sci U S A; 2014 Dec; 111(51):18178-82. PubMed ID: 25489102 [TBL] [Abstract][Full Text] [Related]
3. Controlling unconventional superconductivity in artificially engineered Naritsuka M; Terashima T; Matsuda Y J Phys Condens Matter; 2021 May; 33(27):. PubMed ID: 33946054 [TBL] [Abstract][Full Text] [Related]
5. Direct measurement of the evolution of magnetism and superconductivity toward the quantum critical point. Higemoto W; Yokoyama M; Ito TU; Suzuki T; Raymond S; Yanase Y Proc Natl Acad Sci U S A; 2022 Dec; 119(49):e2209549119. PubMed ID: 36442120 [TBL] [Abstract][Full Text] [Related]
7. From Kondo lattices to Kondo superlattices. Shimozawa M; Goh SK; Shibauchi T; Matsuda Y Rep Prog Phys; 2016 Jul; 79(7):074503. PubMed ID: 27275757 [TBL] [Abstract][Full Text] [Related]
8. Hybridization and superconducting gaps in the heavy-fermion superconductor PuCoGa5 probed via the dynamics of photoinduced quasiparticles. Talbayev D; Burch KS; Chia EE; Trugman SA; Zhu JX; Bauer ED; Kennison JA; Mitchell JN; Thompson JD; Sarrao JL; Taylor AJ Phys Rev Lett; 2010 Jun; 104(22):227002. PubMed ID: 20867199 [TBL] [Abstract][Full Text] [Related]
9. Nature of the spin resonance mode in CeCoIn Song Y; Wang W; Van Dyke JS; Pouse N; Ran S; Yazici D; Schneidewind A; Čermák P; Qiu Y; Maple MB; Morr DK; Dai P Commun Phys; 2020; 3():. PubMed ID: 33655080 [TBL] [Abstract][Full Text] [Related]
10. Hidden magnetism and quantum criticality in the heavy fermion superconductor CeRhIn5. Park T; Ronning F; Yuan HQ; Salamon MB; Movshovich R; Sarrao JL; Thompson JD Nature; 2006 Mar; 440(7080):65-8. PubMed ID: 16511490 [TBL] [Abstract][Full Text] [Related]
11. Chiral superconductivity in heavy-fermion metal UTe Jiao L; Howard S; Ran S; Wang Z; Rodriguez JO; Sigrist M; Wang Z; Butch NP; Madhavan V Nature; 2020 Mar; 579(7800):523-527. PubMed ID: 32214254 [TBL] [Abstract][Full Text] [Related]
12. Foundations of heavy-fermion superconductivity: lattice Kondo effect and Mott physics. Steglich F; Wirth S Rep Prog Phys; 2016 Aug; 79(8):084502. PubMed ID: 27376190 [TBL] [Abstract][Full Text] [Related]
13. Visualizing heavy fermion confinement and Pauli-limited superconductivity in layered CeCoIn Gyenis A; Feldman BE; Randeria MT; Peterson GA; Bauer ED; Aynajian P; Yazdani A Nat Commun; 2018 Feb; 9(1):549. PubMed ID: 29416021 [TBL] [Abstract][Full Text] [Related]
15. Heavy holes as a precursor to superconductivity in antiferromagnetic CeIn3. Sebastian SE; Harrison N; Batista CD; Trugman SA; Fanelli V; Jaime M; Murphy TP; Palm EC; Harima H; Ebihara T Proc Natl Acad Sci U S A; 2009 May; 106(19):7741-4. PubMed ID: 19416895 [TBL] [Abstract][Full Text] [Related]
16. Charge fluctuations in the intermediate-valence ground state of SmCoIn Tam DW; Colonna N; Kumar N; Piamonteze C; Alarab F; Strocov VN; Cervellino A; Fennell T; Gawryluk DJ; Pomjakushina E; Soh Y; Kenzelmann M Commun Phys; 2023; 6(1):223. PubMed ID: 38665398 [TBL] [Abstract][Full Text] [Related]