These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 25062916)

  • 21. The mating-type locus b of the sugarcane smut Sporisorium scitamineum is essential for mating, filamentous growth and pathogenicity.
    Yan M; Zhu G; Lin S; Xian X; Chang C; Xi P; Shen W; Huang W; Cai E; Jiang Z; Deng YZ; Zhang LH
    Fungal Genet Biol; 2016 Jan; 86():1-8. PubMed ID: 26563415
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genome comparison of barley and maize smut fungi reveals targeted loss of RNA silencing components and species-specific presence of transposable elements.
    Laurie JD; Ali S; Linning R; Mannhaupt G; Wong P; Güldener U; Münsterkötter M; Moore R; Kahmann R; Bakkeren G; Schirawski J
    Plant Cell; 2012 May; 24(5):1733-45. PubMed ID: 22623492
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative whole-genome analysis reveals artificial selection effects on Ustilago esculenta genome.
    Ye Z; Pan Y; Zhang Y; Cui H; Jin G; McHardy AC; Fan L; Yu X
    DNA Res; 2017 Dec; 24(6):635-648. PubMed ID: 28992048
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparative analyses of secreted proteins in plant pathogenic smut fungi and related basidiomycetes.
    Schuster M; Schweizer G; Kahmann R
    Fungal Genet Biol; 2018 Mar; 112():21-30. PubMed ID: 28089076
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparative genomics to explore phylogenetic relationship, cryptic sexual potential and host specificity of Rhynchosporium species on grasses.
    Penselin D; Münsterkötter M; Kirsten S; Felder M; Taudien S; Platzer M; Ashelford K; Paskiewicz KH; Harrison RJ; Hughes DJ; Wolf T; Shelest E; Graap J; Hoffmann J; Wenzel C; Wöltje N; King KM; Fitt BD; Güldener U; Avrova A; Knogge W
    BMC Genomics; 2016 Nov; 17(1):953. PubMed ID: 27875982
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mining the effector repertoire of the biotrophic fungal pathogen Ustilago hordei during host and non-host infection.
    Ökmen B; Mathow D; Hof A; Lahrmann U; Aßmann D; Doehlemann G
    Mol Plant Pathol; 2018 Dec; 19(12):2603-2622. PubMed ID: 30047221
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis.
    Kämper J; Kahmann R; Bölker M; Ma LJ; Brefort T; Saville BJ; Banuett F; Kronstad JW; Gold SE; Müller O; Perlin MH; Wösten HA; de Vries R; Ruiz-Herrera J; Reynaga-Peña CG; Snetselaar K; McCann M; Pérez-Martín J; Feldbrügge M; Basse CW; Steinberg G; Ibeas JI; Holloman W; Guzman P; Farman M; Stajich JE; Sentandreu R; González-Prieto JM; Kennell JC; Molina L; Schirawski J; Mendoza-Mendoza A; Greilinger D; Münch K; Rössel N; Scherer M; Vranes M; Ladendorf O; Vincon V; Fuchs U; Sandrock B; Meng S; Ho EC; Cahill MJ; Boyce KJ; Klose J; Klosterman SJ; Deelstra HJ; Ortiz-Castellanos L; Li W; Sanchez-Alonso P; Schreier PH; Häuser-Hahn I; Vaupel M; Koopmann E; Friedrich G; Voss H; Schlüter T; Margolis J; Platt D; Swimmer C; Gnirke A; Chen F; Vysotskaia V; Mannhaupt G; Güldener U; Münsterkötter M; Haase D; Oesterheld M; Mewes HW; Mauceli EW; DeCaprio D; Wade CM; Butler J; Young S; Jaffe DB; Calvo S; Nusbaum C; Galagan J; Birren BW
    Nature; 2006 Nov; 444(7115):97-101. PubMed ID: 17080091
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cause and Effectors: Whole-Genome Comparisons Reveal Shared but Rapidly Evolving Effector Sets among Host-Specific Plant-Castrating Fungi.
    Beckerson WC; Rodríguez de la Vega RC; Hartmann FE; Duhamel M; Giraud T; Perlin MH
    mBio; 2019 Nov; 10(6):. PubMed ID: 31690676
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The smut fungus Ustilago esculenta has a bipolar mating system with three idiomorphs larger than 500 kb.
    Liang SW; Huang YH; Chiu JY; Tseng HW; Huang JH; Shen WC
    Fungal Genet Biol; 2019 May; 126():61-74. PubMed ID: 30794950
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cross-species analysis between the maize smut fungi Ustilago maydis and Sporisorium reilianum highlights the role of transcriptional change of effector orthologs for virulence and disease.
    Zuo W; Depotter JRL; Gupta DK; Thines M; Doehlemann G
    New Phytol; 2021 Oct; 232(2):719-733. PubMed ID: 34270791
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Complete Genome Sequence of Sporisorium scitamineum and Biotrophic Interaction Transcriptome with Sugarcane.
    Taniguti LM; Schaker PD; Benevenuto J; Peters LP; Carvalho G; Palhares A; Quecine MC; Nunes FR; Kmit MC; Wai A; Hausner G; Aitken KS; Berkman PJ; Fraser JA; Moolhuijzen PM; Coutinho LL; Creste S; Vieira ML; Kitajima JP; Monteiro-Vitorello CB
    PLoS One; 2015; 10(6):e0129318. PubMed ID: 26065709
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Conservation of the Ustilago maydis effector See1 in related smuts.
    Redkar A; Villajuana-Bonequi M; Doehlemann G
    Plant Signal Behav; 2015; 10(12):e1086855. PubMed ID: 26357869
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genome-Wide Annotation and Comparative Analysis of Cytochrome P450 Monooxygenases in Basidiomycete Biotrophic Plant Pathogens.
    Qhanya LB; Matowane G; Chen W; Sun Y; Letsimo EM; Parvez M; Yu JH; Mashele SS; Syed K
    PLoS One; 2015; 10(11):e0142100. PubMed ID: 26536121
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The functionally conserved effector Sta1 is a fungal cell wall protein required for virulence in Ustilago maydis.
    Tanaka S; Gollin I; Rössel N; Kahmann R
    New Phytol; 2020 Jul; 227(1):185-199. PubMed ID: 32112567
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative secretome analysis of different smut fungi and identification of plant cell death-inducing secreted proteins from Tilletia horrida.
    Wang A; Pan L; Niu X; Shu X; Yi X; Yamamoto N; Li S; Deng Q; Zhu J; Liang Y; Wang L; Li P; Zheng A
    BMC Plant Biol; 2019 Aug; 19(1):360. PubMed ID: 31419944
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exploring Potential Surrogate Systems for Studying the Early Steps of the
    Marrafon-Silva M; Maia T; Calderan-Rodrigues MJ; Strabello M; Oliveira L; Creste S; Melotto M; Monteiro-Vitorello CB
    Phytopathology; 2024 Jun; 114(6):1295-1304. PubMed ID: 38148162
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vitro secretomic analysis identifies putative pathogenicity-related proteins of Sporisorium scitamineum - The sugarcane smut fungus.
    Barnabas L; Ashwin NMR; Kaverinathan K; Trentin AR; Pivato M; Sundar AR; Malathi P; Viswanathan R; Carletti P; Arrigoni G; Masi A; Agrawal GK; Rakwal R
    Fungal Biol; 2017 Mar; 121(3):199-211. PubMed ID: 28215348
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effectors with Different Gears: Divergence of
    Depotter JRL; Zuo W; Hansen M; Zhang B; Xu M; Doehlemann G
    J Fungi (Basel); 2020 Dec; 7(1):. PubMed ID: 33383948
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Degradation of the plant defence hormone salicylic acid by the biotrophic fungus Ustilago maydis.
    Rabe F; Ajami-Rashidi Z; Doehlemann G; Kahmann R; Djamei A
    Mol Microbiol; 2013 Jul; 89(1):179-88. PubMed ID: 23692401
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A sugarcane smut fungus effector simulates the host endogenous elicitor peptide to suppress plant immunity.
    Ling H; Fu X; Huang N; Zhong Z; Su W; Lin W; Cui H; Que Y
    New Phytol; 2022 Jan; 233(2):919-933. PubMed ID: 34716592
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.