These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 25063084)

  • 41. Influence of interbracket distances on the resistance to sliding of orthodontic appliances.
    Whitley JQ; Kusy RP
    Am J Orthod Dentofacial Orthop; 2007 Sep; 132(3):360-72. PubMed ID: 17826605
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of ligation type and method on the resistance to sliding of novel orthodontic brackets with second-order angulation in the dry and wet states.
    Thorstenson GA; Kusy RP
    Angle Orthod; 2003 Aug; 73(4):418-30. PubMed ID: 12940563
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ultrastructural effect of self-ligating bracket materials on stainless steel and superelastic NiTi wire surfaces.
    Choi S; Lee S; Cheong Y; Park KH; Park HK; Park YG
    Microsc Res Tech; 2012 Aug; 75(8):1076-83. PubMed ID: 22419658
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Resistance to sliding of self-ligating brackets versus conventional stainless steel twin brackets with second-order angulation in the dry and wet (saliva) states.
    Thorstenson GA; Kusy RP
    Am J Orthod Dentofacial Orthop; 2001 Oct; 120(4):361-70. PubMed ID: 11606960
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Stress relaxation and recovery behaviour of composite orthodontic archwires in bending.
    Zufall SW; Kusy RP
    Eur J Orthod; 2000 Feb; 22(1):1-12. PubMed ID: 10721240
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Comparison of mechanical properties on different phase transformation points of nickel-titanium orthodontic wires].
    Lin J; Dong C; Zhao Y; Wang XX
    Zhejiang Da Xue Xue Bao Yi Xue Ban; 2007 Sep; 36(5):503-8. PubMed ID: 17924472
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mechanical properties of orthodontic wires made of super engineering plastic.
    Maekawa M; Kanno Z; Wada T; Hongo T; Doi H; Hanawa T; Ono T; Uo M
    Dent Mater J; 2015; 34(1):114-9. PubMed ID: 25748467
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evaluation of the mechanical properties and surface topography of as-received, immersed and as-retrieved orthodontic archwires.
    Pop SI; Dudescu M; Merie VV; Pacurar M; Bratu CD
    Clujul Med; 2017; 90(3):313-326. PubMed ID: 28781528
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fabrication of a new composite orthodontic archwire and validation by a bridging micromechanics model.
    Huang ZM; Gopal R; Fujihara K; Ramakrishna S; Loh PL; Foong WC; Ganesh VK; Chew CL
    Biomaterials; 2003 Aug; 24(17):2941-53. PubMed ID: 12742734
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mechanical properties of orthodontic wires covered with a polyether ether ketone tube.
    Shirakawa N; Iwata T; Miyake S; Otuka T; Koizumi S; Kawata T
    Angle Orthod; 2018 Jul; 88(4):442-449. PubMed ID: 29561658
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of heat treatment on stainless steel orthodontic wires.
    Cuoghi OA; Kasbergen GF; Santos PH; Mendonça MR; Tondelli PM
    Braz Oral Res; 2011; 25(2):128-34. PubMed ID: 21359492
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Assessment of orthodontic biomaterials' cytotoxicity: an in vitro study on cell culture.
    Sodor A; Ogodescu AS; Petreuş T; Şişu AM; Zetu IN
    Rom J Morphol Embryol; 2015; 56(3):1119-25. PubMed ID: 26662148
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Superhydrophilic and Antifriction Thin Hydrogel Formed under Mild Conditions for Medical Bare Metal Guide Wires.
    Yang G; Lin W; Shah BA; Liang J; Lu X; Yuan B
    ACS Appl Mater Interfaces; 2024 Jan; 16(1):1482-1491. PubMed ID: 38147690
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Recent Advances in Orthodontic Archwires: A Review.
    Chainani P; Paul P; Shivlani V
    Cureus; 2023 Oct; 15(10):e47633. PubMed ID: 38022289
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of archwire stiffness and friction on maxillary posterior segment displacement during anterior segment retraction: A three-dimensional finite element analysis.
    Park CS; Yu HS; Cha JY; Mo SS; Lee KJ
    Korean J Orthod; 2019 Nov; 49(6):393-403. PubMed ID: 31815107
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mechanical properties and aesthetics of FRP orthodontic wire fabricated by hot drawing.
    Imai T; Watari F; Yamagata S; Kobayashi M; Nagayama K; Toyoizumi Y; Nakamura S
    Biomaterials; 1998 Dec; 19(23):2195-200. PubMed ID: 9884060
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Functional Coatings for Orthodontic Archwires-A Review.
    Bącela J; Łabowska MB; Detyna J; Zięty A; Michalak I
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32707959
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The Influence of 2-Methacryloyloxyethyl Phosphorylcholine Polymer Materials on Orthodontic Friction and Attachment of Oral Bacteria.
    Kunimatsu R; Tsuka Y; Nakajima K; Sumi K; Yoshimi Y; Kado I; Inada A; Kiritoshi Y; Tanimoto K
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013906
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Analytical study for prediction of stress distribution on orthodontic archwire considering short-term stress loss.
    Chun Y; Lee Y; Lee H; Kim M; Kim H
    Comput Methods Biomech Biomed Engin; 2023; 26(14):1752-1760. PubMed ID: 36420982
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Orthodontic force prediction model of T-loop closing spring based on dynamic resistance model.
    Jiang J; Chen H; Huang Z; Ma X; Zhang Y; Liu Y
    Proc Inst Mech Eng H; 2020 Dec; 234(12):1384-1396. PubMed ID: 32729781
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.