BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

859 related articles for article (PubMed ID: 25063092)

  • 21. Synthesis and characterization of monodispersed water dispersible Fe
    Sharma KS; Ningthoujam RS; Dubey AK; Chattopadhyay A; Phapale S; Juluri RR; Mukherjee S; Tewari R; Shetake NG; Pandey BN; Vatsa RK
    Sci Rep; 2018 Oct; 8(1):14766. PubMed ID: 30283083
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multilayered inorganic-organic microdisks as ideal carriers for high magnetothermal actuation: assembling ferrimagnetic nanoparticles devoid of dipolar interactions.
    Castellanos-Rubio I; Munshi R; Qin Y; Eason DB; Orue I; Insausti M; Pralle A
    Nanoscale; 2018 Nov; 10(46):21879-21892. PubMed ID: 30457620
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced specific absorption rate in silanol functionalized Fe3O4 core-shell nanoparticles: study of Fe leaching in Fe3O4 and hyperthermia in L929 and HeLa cells.
    Majeed J; Pradhan L; Ningthoujam RS; Vatsa RK; Bahadur D; Tyagi AK
    Colloids Surf B Biointerfaces; 2014 Oct; 122():396-403. PubMed ID: 25089699
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of magnetic dipolar interactions on nanoparticle heating efficiency: implications for cancer hyperthermia.
    Branquinho LC; Carrião MS; Costa AS; Zufelato N; Sousa MH; Miotto R; Ivkov R; Bakuzis AF
    Sci Rep; 2013 Oct; 3():2887. PubMed ID: 24096272
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lorentz microscopy sheds light on the role of dipolar interactions in magnetic hyperthermia.
    Campanini M; Ciprian R; Bedogni E; Mega A; Chiesi V; Casoli F; de Julián Fernández C; Rotunno E; Rossi F; Secchi A; Bigi F; Salviati G; Magén C; Grillo V; Albertini F
    Nanoscale; 2015 May; 7(17):7717-25. PubMed ID: 25835488
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 2D to 3D crossover of the magnetic properties in ordered arrays of iron oxide nanocrystals.
    Faure B; Wetterskog E; Gunnarsson K; Josten E; Hermann RP; Brückel T; Andreasen JW; Meneau F; Meyer M; Lyubartsev A; Bergström L; Salazar-Alvarez G; Svedlindh P
    Nanoscale; 2013 Feb; 5(3):953-60. PubMed ID: 23238262
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The efficiency of magnetic hyperthermia and in vivo histocompatibility for human-like collagen protein-coated magnetic nanoparticles.
    Chang L; Liu XL; Di Fan D; Miao YQ; Zhang H; Ma HP; Liu QY; Ma P; Xue WM; Luo YE; Fan HM
    Int J Nanomedicine; 2016; 11():1175-85. PubMed ID: 27042065
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of surface modification on magnetization of iron oxide nanoparticle colloids.
    Yuan Y; Rende D; Altan CL; Bucak S; Ozisik R; Borca-Tasciuc DA
    Langmuir; 2012 Sep; 28(36):13051-9. PubMed ID: 22889238
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effective heating of magnetic nanoparticle aggregates for in vivo nano-theranostic hyperthermia.
    Wang C; Hsu CH; Li Z; Hwang LP; Lin YC; Chou PT; Lin YY
    Int J Nanomedicine; 2017; 12():6273-6287. PubMed ID: 28894366
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermal and magnetic properties of chitosan-iron oxide nanoparticles.
    Soares PI; Machado D; Laia C; Pereira LC; Coutinho JT; Ferreira IM; Novo CM; Borges JP
    Carbohydr Polym; 2016 Sep; 149():382-90. PubMed ID: 27261762
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Magnetic ionic liquids produced by the dispersion of magnetic nanoparticles in 1-n-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (BMI.NTf2).
    Medeiros AM; Parize AL; Oliveira VM; Neto BA; Bakuzis AF; Sousa MH; Rossi LM; Rubim JC
    ACS Appl Mater Interfaces; 2012 Oct; 4(10):5458-65. PubMed ID: 22966984
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cell-Promoted Nanoparticle Aggregation Decreases Nanoparticle-Induced Hyperthermia under an Alternating Magnetic Field Independently of Nanoparticle Coating, Core Size, and Subcellular Localization.
    Mejías R; Hernández Flores P; Talelli M; Tajada-Herráiz JL; Brollo MEF; Portilla Y; Morales MP; Barber DF
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):340-355. PubMed ID: 30525392
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A comparative investigation of normal and inverted exchange bias effect for magnetic fluid hyperthermia applications.
    Tsopoe SP; Borgohain C; Fopase R; Pandey LM; Borah JP
    Sci Rep; 2020 Oct; 10(1):18666. PubMed ID: 33122680
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optimizing magnetic nanoparticle based thermal therapies within the physical limits of heating.
    Etheridge ML; Bischof JC
    Ann Biomed Eng; 2013 Jan; 41(1):78-88. PubMed ID: 22855120
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Experimental Investigation of Magnetic Nanoparticle-Enhanced Microwave Hyperthermia.
    McWilliams BT; Wang H; Binns VJ; Curto S; Bossmann SH; Prakash P
    J Funct Biomater; 2017 Jun; 8(3):. PubMed ID: 28640198
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Complementary approaches for the evaluation of biocompatibility of
    Antic B; Boskovic M; Nikodinovic-Runic J; Ming Y; Zhang H; Bozin ES; Janković D; Spasojevic V; Vranjes-Djuric S
    Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():157-164. PubMed ID: 28415449
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of medium viscosity and intracellular environment on the magnetization of superparamagnetic nanoparticles in silk fibroin solutions and 3T3 mouse fibroblast cell cultures.
    Urbano-Bojorge AL; Casanova-Carvajal O; Félix-González N; Fernández L; Madurga R; Sánchez-Cabezas S; Aznar E; Ramos M; Serrano-Olmedo JJ
    Nanotechnology; 2018 Sep; 29(38):385705. PubMed ID: 29947336
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The heating efficiency of magnetic nanoparticles under an alternating magnetic field.
    Yu X; Yang R; Wu C; Liu B; Zhang W
    Sci Rep; 2022 Sep; 12(1):16055. PubMed ID: 36163493
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vitro assessment of poly(methylmethacrylate)-based bone cement containing magnetite nanoparticles for hyperthermia treatment of bone tumor.
    Li Z; Kawamura K; Kawashita M; Kudo TA; Kanetaka H; Hiraoka M
    J Biomed Mater Res A; 2012 Oct; 100(10):2537-45. PubMed ID: 22528664
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Magnetic Properties of Magnetic Nanoparticles for Efficient Hyperthermia.
    Obaidat IM; Issa B; Haik Y
    Nanomaterials (Basel); 2015 Jan; 5(1):63-89. PubMed ID: 28347000
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 43.