BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 25063102)

  • 1. Fabrication and cytocompatibility of spherical magnesium ammonium phosphate granules.
    Christel T; Geffers M; Klammert U; Nies B; Höß A; Groll J; Kübler AC; Gbureck U
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():130-6. PubMed ID: 25063102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation and properties of magnesium-ammonium-phosphate hexahydrate biocements in the Ca-Mg-PO4 system.
    Vorndran E; Ewald A; Müller FA; Zorn K; Kufner A; Gbureck U
    J Mater Sci Mater Med; 2011 Mar; 22(3):429-36. PubMed ID: 21221732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of ethanol content in the precipitation medium on the composition, structure and reactivity of magnesium-calcium phosphate.
    Babaie E; Zhou H; Lin B; Bhaduri SB
    Mater Sci Eng C Mater Biol Appl; 2015 Aug; 53():204-11. PubMed ID: 26042708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning the properties of magnesium phosphate-based bone cements: Effect of powder to liquid ratio and aqueous solution concentration.
    Gelli R; Mati L; Ridi F; Baglioni P
    Mater Sci Eng C Mater Biol Appl; 2019 Feb; 95():248-255. PubMed ID: 30573247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase composition, mechanical performance and in vitro biocompatibility of hydraulic setting calcium magnesium phosphate cement.
    Klammert U; Reuther T; Blank M; Reske I; Barralet JE; Grover LM; Kübler AC; Gbureck U
    Acta Biomater; 2010 Apr; 6(4):1529-35. PubMed ID: 19837194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accelerated bone regeneration through rational design of magnesium phosphate cements.
    Kaiser F; Schröter L; Stein S; Krüger B; Weichhold J; Stahlhut P; Ignatius A; Gbureck U
    Acta Biomater; 2022 Jun; 145():358-371. PubMed ID: 35443213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving bone defect healing using magnesium phosphate granules with tailored degradation characteristics.
    Schröter L; Kaiser F; Küppers O; Stein S; Krüger B; Wohlfahrt P; Geroneit I; Stahlhut P; Gbureck U; Ignatius A
    Dent Mater; 2024 Mar; 40(3):508-519. PubMed ID: 38199893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrolysis, setting properties and in vitro characterization of wollastonite/newberyite bone cement mixtures.
    Sopcak T; Medvecky L; Giretova M; Stulajterova R; Durisin J
    J Biomater Appl; 2018 Feb; 32(7):871-885. PubMed ID: 29224421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone regeneration capacity of magnesium phosphate cements in a large animal model.
    Kanter B; Vikman A; Brückner T; Schamel M; Gbureck U; Ignatius A
    Acta Biomater; 2018 Mar; 69():352-361. PubMed ID: 29409867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel tricalcium silicate/magnesium phosphate composite bone cement having high compressive strength, in vitro bioactivity and cytocompatibility.
    Liu W; Zhai D; Huan Z; Wu C; Chang J
    Acta Biomater; 2015 Jul; 21():217-27. PubMed ID: 25890099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low temperature fabrication of magnesium phosphate cement scaffolds by 3D powder printing.
    Klammert U; Vorndran E; Reuther T; Müller FA; Zorn K; Gbureck U
    J Mater Sci Mater Med; 2010 Nov; 21(11):2947-53. PubMed ID: 20740307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physicochemical properties of the novel biphasic hydroxyapatite-magnesium phosphate biomaterial.
    Pijocha D; Zima A; Paszkiewicz Z; Ślósarczyk A
    Acta Bioeng Biomech; 2013; 15(3):53-63. PubMed ID: 24215450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conditions influencing the precipitation of magnesium ammonium phosphate.
    Stratful I; Scrimshaw MD; Lester JN
    Water Res; 2001 Dec; 35(17):4191-9. PubMed ID: 11791849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphate recovery through struvite precipitation by CO2 removal: effect of magnesium, phosphate and ammonium concentrations.
    Korchef A; Saidou H; Ben Amor M
    J Hazard Mater; 2011 Feb; 186(1):602-13. PubMed ID: 21134714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D plotting in the preparation of newberyite, struvite, and brushite porous scaffolds: using magnesium oxide as a starting material.
    Cao X; Lu H; Liu J; Lu W; Guo L; Ma M; Zhang B; Guo Y
    J Mater Sci Mater Med; 2019 Jul; 30(8):88. PubMed ID: 31325082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of strontium substitution on the material properties and osteogenic potential of 3D powder printed magnesium phosphate scaffolds.
    Meininger S; Moseke C; Spatz K; März E; Blum C; Ewald A; Vorndran E
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():1145-1158. PubMed ID: 30812998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physicochemical degradation of calcium magnesium phosphate (stanfieldite) based bone replacement materials and the effect on their cytocompatibility.
    Schaufler C; Schmitt AM; Moseke C; Stahlhut P; Geroneit I; Brückner M; Meyer-Lindenberg A; Vorndran E
    Biomed Mater; 2022 Dec; 18(1):. PubMed ID: 36541469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel magnesium phosphate cements with high early strength and antibacterial properties.
    Mestres G; Ginebra MP
    Acta Biomater; 2011 Apr; 7(4):1853-61. PubMed ID: 21147277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antimicrobial properties and dentin bonding strength of magnesium phosphate cements.
    Mestres G; Abdolhosseini M; Bowles W; Huang SH; Aparicio C; Gorr SU; Ginebra MP
    Acta Biomater; 2013 Sep; 9(9):8384-93. PubMed ID: 23747324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strong and tough magnesium wire reinforced phosphate cement composites for load-bearing bone replacement.
    Krüger R; Seitz JM; Ewald A; Bach FW; Groll J
    J Mech Behav Biomed Mater; 2013 Apr; 20():36-44. PubMed ID: 23455162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.