These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 25063124)
1. Mg- and/or Sr-doped tricalcium phosphate/bioactive glass composites: synthesis, microstructure and biological responsiveness. Bellucci D; Sola A; Cacciotti I; Bartoli C; Gazzarri M; Bianco A; Chiellini F; Cannillo V Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():312-24. PubMed ID: 25063124 [TBL] [Abstract][Full Text] [Related]
2. Development of beta-tricalcium phosphate/sol-gel derived bioactive glass composites: physical, mechanical, and in vitro biological evaluations. Hesaraki S; Safari M; Shokrgozar MA J Biomed Mater Res B Appl Biomater; 2009 Oct; 91(1):459-69. PubMed ID: 19507141 [TBL] [Abstract][Full Text] [Related]
3. Strontium substituted calcium phosphate biphasic ceramics obtained by a powder precipitation method. Kim HW; Koh YH; Kong YM; Kang JG; Kim HE J Mater Sci Mater Med; 2004 Oct; 15(10):1129-34. PubMed ID: 15516874 [TBL] [Abstract][Full Text] [Related]
4. Synthesis and structural characterization of strontium- and magnesium-co-substituted beta-tricalcium phosphate. Kannan S; Goetz-Neunhoeffer F; Neubauer J; Pina S; Torres PM; Ferreira JM Acta Biomater; 2010 Feb; 6(2):571-6. PubMed ID: 19679202 [TBL] [Abstract][Full Text] [Related]
6. Microstructure, mechanical characteristics and cell compatibility of β-tricalcium phosphate reinforced with biodegradable Fe-Mg metal phase. Swain SK; Gotman I; Unger R; Kirkpatrick CJ; Gutmanas EY J Mech Behav Biomed Mater; 2016 Jan; 53():434-444. PubMed ID: 26409234 [TBL] [Abstract][Full Text] [Related]
7. Understanding the influence of MgO and SrO binary doping on the mechanical and biological properties of beta-TCP ceramics. Banerjee SS; Tarafder S; Davies NM; Bandyopadhyay A; Bose S Acta Biomater; 2010 Oct; 6(10):4167-74. PubMed ID: 20493283 [TBL] [Abstract][Full Text] [Related]
8. Bioactive glass-based composites for the production of dense sintered bodies and porous scaffolds. Bellucci D; Sola A; Cannillo V Mater Sci Eng C Mater Biol Appl; 2013 May; 33(4):2138-51. PubMed ID: 23498242 [TBL] [Abstract][Full Text] [Related]
9. Study of hMSC proliferation and differentiation on Mg and Mg-Sr containing biphasic β-tricalcium phosphate and amorphous calcium phosphate ceramics. Singh SS; Roy A; Lee B; Kumta PN Mater Sci Eng C Mater Biol Appl; 2016 Jul; 64():219-228. PubMed ID: 27127047 [TBL] [Abstract][Full Text] [Related]
10. Effect of rapidly resorbable bone substitute materials on the temporal expression of the osteoblastic phenotype in vitro. Knabe C; Houshmand A; Berger G; Ducheyne P; Gildenhaar R; Kranz I; Stiller M J Biomed Mater Res A; 2008 Mar; 84(4):856-68. PubMed ID: 17635025 [TBL] [Abstract][Full Text] [Related]
11. A new hydroxyapatite-based biocomposite for bone replacement. Bellucci D; Sola A; Gazzarri M; Chiellini F; Cannillo V Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1091-101. PubMed ID: 23827547 [TBL] [Abstract][Full Text] [Related]
12. A study of strontium doped calcium phosphate coatings on AZ31. Singh SS; Roy A; Lee BE; Ohodnicki J; Loghmanian A; Banerjee I; Kumta PN Mater Sci Eng C Mater Biol Appl; 2014 Jul; 40():357-65. PubMed ID: 24857503 [TBL] [Abstract][Full Text] [Related]
13. Biological responses of human bone marrow mesenchymal stem cells to Sr-M-Si (M = Zn, Mg) silicate bioceramics. Zhang M; Wu C; Lin K; Fan W; Chen L; Xiao Y; Chang J J Biomed Mater Res A; 2012 Nov; 100(11):2979-90. PubMed ID: 22696393 [TBL] [Abstract][Full Text] [Related]
14. Effects of bioactive glass and beta-TCP containing three-dimensional laser sintered polyetheretherketone composites on osteoblasts in vitro. von Wilmowsky C; Vairaktaris E; Pohle D; Rechtenwald T; Lutz R; Münstedt H; Koller G; Schmidt M; Neukam FW; Schlegel KA; Nkenke E J Biomed Mater Res A; 2008 Dec; 87(4):896-902. PubMed ID: 18228252 [TBL] [Abstract][Full Text] [Related]
15. The effect of strontium incorporation into CaSiO3 ceramics on their physical and biological properties. Wu C; Ramaswamy Y; Kwik D; Zreiqat H Biomaterials; 2007 Jul; 28(21):3171-81. PubMed ID: 17445881 [TBL] [Abstract][Full Text] [Related]
16. Strontium substituted bioactive glasses for tissue engineered scaffolds: the importance of octacalcium phosphate. Sriranganathan D; Kanwal N; Hing KA; Hill RG J Mater Sci Mater Med; 2016 Feb; 27(2):39. PubMed ID: 26704556 [TBL] [Abstract][Full Text] [Related]
17. Three-dimensional printing of strontium-containing mesoporous bioactive glass scaffolds for bone regeneration. Zhang J; Zhao S; Zhu Y; Huang Y; Zhu M; Tao C; Zhang C Acta Biomater; 2014 May; 10(5):2269-81. PubMed ID: 24412143 [TBL] [Abstract][Full Text] [Related]
18. Effects of Mn-doping on the structure and biological properties of β-tricalcium phosphate. Torres PM; Vieira SI; Cerqueira AR; Pina S; da Cruz Silva OA; Abrantes JC; Ferreira JM J Inorg Biochem; 2014 Jul; 136():57-66. PubMed ID: 24747361 [TBL] [Abstract][Full Text] [Related]
19. Biological evaluation of porous nanocomposite scaffolds based on strontium substituted β-TCP and bioactive glass: An in vitro and in vivo study. Kazemi M; Dehghan MM; Azami M Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110071. PubMed ID: 31546377 [TBL] [Abstract][Full Text] [Related]
20. Titanium and strontium-doped phosphate glasses as vehicles for strontium ion delivery to cells. Lakhkar N; Abou Neel EA; Salih V; Knowles JC J Biomater Appl; 2011 May; 25(8):877-93. PubMed ID: 20219848 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]