BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 25063146)

  • 1. Optimization of poly(L-lactic acid)/segmented polyurethane electrospinning process for the production of bilayered small-diameter nanofibrous tubular structures.
    Montini Ballarin F; Caracciolo PC; Blotta E; Ballarin VL; Abraham GA
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():489-99. PubMed ID: 25063146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrospun nanofibrous scaffolds of segmented polyurethanes based on PEG, PLLA and PTMC blocks: Physico-chemical properties and morphology.
    Trinca RB; Abraham GA; Felisberti MI
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():511-7. PubMed ID: 26249621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elasticity assessment of electrospun nanofibrous vascular grafts: a comparison with femoral ovine arteries.
    Bagnasco DS; Ballarin FM; Cymberknop LJ; Balay G; Negreira C; Abraham GA; Armentano RL
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():446-54. PubMed ID: 25491850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heparinized PLLA/PLCL nanofibrous scaffold for potential engineering of small-diameter blood vessel: tunable elasticity and anticoagulation property.
    Wang W; Hu J; He C; Nie W; Feng W; Qiu K; Zhou X; Gao Y; Wang G
    J Biomed Mater Res A; 2015 May; 103(5):1784-97. PubMed ID: 25196988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering.
    Yang F; Murugan R; Wang S; Ramakrishna S
    Biomaterials; 2005 May; 26(15):2603-10. PubMed ID: 15585263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Axially aligned 3D nanofibrous grafts of PLA-PCL for small diameter cardiovascular applications.
    Sankaran KK; Krishnan UM; Sethuraman S
    J Biomater Sci Polym Ed; 2014; 25(16):1791-812. PubMed ID: 25158229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrospun nanofibrous scaffolds of poly (L-lactic acid)-dicalcium silicate composite via ultrasonic-aging technique for bone regeneration.
    Dong S; Sun J; Li Y; Li J; Cui W; Li B
    Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():426-33. PubMed ID: 24411397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical behavior of bilayered small-diameter nanofibrous structures as biomimetic vascular grafts.
    Montini-Ballarin F; Calvo D; Caracciolo PC; Rojo F; Frontini PM; Abraham GA; V Guinea G
    J Mech Behav Biomed Mater; 2016 Jul; 60():220-233. PubMed ID: 26872337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of poly (L-lactic acid)/gelatin composite tubular scaffolds for vascular tissue engineering.
    Shalumon KT; Deepthi S; Anupama MS; Nair SV; Jayakumar R; Chennazhi KP
    Int J Biol Macromol; 2015 Jan; 72():1048-55. PubMed ID: 25316418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scaffolding for challenging environments: materials selection for tissue engineered intestine.
    Boomer L; Liu Y; Mahler N; Johnson J; Zak K; Nelson T; Lannutti J; Besner GE
    J Biomed Mater Res A; 2014 Nov; 102(11):3795-802. PubMed ID: 24288210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Composite poly-L-lactic acid/poly-(α,β)-DL-aspartic acid/collagen nanofibrous scaffolds for dermal tissue regeneration.
    Ravichandran R; Venugopal JR; Sundarrajan S; Mukherjee S; Sridhar R; Ramakrishna S
    Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1443-51. PubMed ID: 24364944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro cell performance on hydroxyapatite particles/poly(L-lactic acid) nanofibrous scaffolds with an excellent particle along nanofiber orientation.
    Peng F; Yu X; Wei M
    Acta Biomater; 2011 Jun; 7(6):2585-92. PubMed ID: 21333762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrospinning thermoplastic polyurethane-contained collagen nanofibers for tissue-engineering applications.
    Chen R; Qiu L; Ke Q; He C; Mo X
    J Biomater Sci Polym Ed; 2009; 20(11):1513-36. PubMed ID: 19619394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis, antimicrobial and release of chloroamphenicol loaded poly(L-lactic acid)/ZrO2 nanofibrous membranes.
    Wang H; Ma X; Li Y; Jiang S; Zhai L; Jiang S; Li X
    Int J Biol Macromol; 2013 Nov; 62():494-9. PubMed ID: 24120960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of poly (L-lactic acid) nanofiber orientation on osteogenic responses of human osteoblast-like MG63 cells.
    Wang B; Cai Q; Zhang S; Yang X; Deng X
    J Mech Behav Biomed Mater; 2011 May; 4(4):600-9. PubMed ID: 21396609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of type-I collagen-coated PLLA aligned nanofibers on growth of blood outgrowth endothelial cells.
    Feng ZQ; Lu HJ; Leach MK; Huang NP; Wang YC; Liu CJ; Gu ZZ
    Biomed Mater; 2010 Dec; 5(6):065011. PubMed ID: 21060144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrospun nanostructured scaffolds for bone tissue engineering.
    Prabhakaran MP; Venugopal J; Ramakrishna S
    Acta Biomater; 2009 Oct; 5(8):2884-93. PubMed ID: 19447211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of plasma treatment to nanofibers on initial cell adhesion and cell morphology.
    Liu W; Zhan J; Su Y; Wu T; Wu C; Ramakrishna S; Mo X; Al-Deyab SS; El-Newehy M
    Colloids Surf B Biointerfaces; 2014 Jan; 113():101-6. PubMed ID: 24060934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface modification of biodegradable electrospun nanofiber scaffolds and their interaction with fibroblasts.
    Park K; Ju YM; Son JS; Ahn KD; Han DK
    J Biomater Sci Polym Ed; 2007; 18(4):369-82. PubMed ID: 17540114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of nano-fibrous poly(L-lactic acid) scaffold reinforced by surface modified chitosan micro-fiber.
    Lou T; Wang X; Song G
    Int J Biol Macromol; 2013 Oct; 61():353-8. PubMed ID: 23928011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.