These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 25063169)

  • 1. Analytical and numerical study of diffusion-controlled drug release from composite spherical matrices.
    Hadjitheodorou A; Kalosakas G
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():681-90. PubMed ID: 25063169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantifying diffusion-controlled drug release from spherical devices using Monte Carlo simulations.
    Hadjitheodorou A; Kalosakas G
    Mater Sci Eng C Mater Biol Appl; 2013 Mar; 33(2):763-8. PubMed ID: 25427485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drug release from slabs and the effects of surface roughness.
    Kalosakas G; Martini D
    Int J Pharm; 2015 Dec; 496(2):291-8. PubMed ID: 26453782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drug release from extruded solid lipid matrices: theoretical predictions and independent experiments.
    Güres S; Siepmann F; Siepmann J; Kleinebudde P
    Eur J Pharm Biopharm; 2012 Jan; 80(1):122-9. PubMed ID: 22008146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A mathematical model for predicting controlled release of bioactive agents from composite fiber structures.
    Zilberman M; Sofer M
    J Biomed Mater Res A; 2007 Mar; 80(3):679-86. PubMed ID: 17072845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monte Carlo simulations for the study of drug release from cylindrical matrix systems with an inert nucleus.
    Martínez L; Villalobos R; Sánchez M; Cruz J; Ganem A; Melgoza LM
    Int J Pharm; 2009 Mar; 369(1-2):38-46. PubMed ID: 19027839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monte Carlo simulations in drug release.
    Kosmidis K; Dassios G
    J Pharmacokinet Pharmacodyn; 2019 Apr; 46(2):165-172. PubMed ID: 30880356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parameters affecting drug release from inert matrices. 1: Monte Carlo simulation.
    Villalobos R; Viquez H; Hernández B; Ganem A; Melgoza LM; Young PM
    Pharm Dev Technol; 2012; 17(3):344-52. PubMed ID: 21214424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monte Carlo simulations of drug release from matrices with periodic layers of high and low diffusivity.
    Kosmidis K; Macheras P
    Int J Pharm; 2008 Apr; 354(1-2):111-6. PubMed ID: 18063328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical analysis of the release of slowly dissolving drugs from spherical matrix systems.
    Frenning G
    J Control Release; 2004 Feb; 95(1):109-17. PubMed ID: 15013238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PLGA-based drug delivery systems: importance of the type of drug and device geometry.
    Klose D; Siepmann F; Elkharraz K; Siepmann J
    Int J Pharm; 2008 Apr; 354(1-2):95-103. PubMed ID: 18055140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the use of the Weibull function for the discernment of drug release mechanisms.
    Papadopoulou V; Kosmidis K; Vlachou M; Macheras P
    Int J Pharm; 2006 Feb; 309(1-2):44-50. PubMed ID: 16376033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A general code to predict the drug release kinetics from different shaped matrices.
    Barba AA; d'Amore M; Chirico S; Lamberti G; Titomanlio G
    Eur J Pharm Sci; 2009 Feb; 36(2-3):359-68. PubMed ID: 19022380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monte Carlo simulations for the study of drug release from matrices with high and low diffusivity areas.
    Kosmidis K; Macheras P
    Int J Pharm; 2007 Oct; 343(1-2):166-72. PubMed ID: 17590294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A mathematical model for pulsatile release: controlled release of rhodamine B from UV-crosslinked thermoresponsive thin films.
    Yang R; Vo T N T; Gorelov AV; Aldabbagh F; Carroll WM; Meere MG; Rochev Y
    Int J Pharm; 2012 May; 427(2):320-7. PubMed ID: 22387279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling of dispersed-drug delivery from planar polymeric systems: optimizing analytical solutions.
    Helbling IM; Ibarra JC; Luna JA; Cabrera MI; Grau RJ
    Int J Pharm; 2010 Nov; 400(1-2):131-7. PubMed ID: 20816929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A three-dimensional semi-analytical solution for predicting drug release through the orifice of a spherical device.
    Simon L; Ospina J
    Int J Pharm; 2016 Jul; 509(1-2):477-482. PubMed ID: 27286637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anomalous diffusion of drug release from a slab matrix: fractional diffusion models.
    Yin C; Li X
    Int J Pharm; 2011 Oct; 418(1):78-87. PubMed ID: 21163340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drug Release from Inert Spherical Matrix Systems Using Monte Carlo Simulations.
    Villalobos R; Garcia EV; Quintanar D; Young PM
    Curr Drug Deliv; 2017; 14(1):65-72. PubMed ID: 27174175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel model for diffusion based release kinetics using an inverse numerical method.
    Mohammadi H; Herzog W
    Med Eng Phys; 2011 Oct; 33(8):893-9. PubMed ID: 21382735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.