BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 25063172)

  • 1. Finite element analyses for optimization design of biodegradable magnesium alloy stent.
    Li J; Zheng F; Qiu X; Wan P; Tan L; Yang K
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():705-14. PubMed ID: 25063172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite element shape optimization for biodegradable magnesium alloy stents.
    Wu W; Petrini L; Gastaldi D; Villa T; Vedani M; Lesma E; Previtali B; Migliavacca F
    Ann Biomed Eng; 2010 Sep; 38(9):2829-40. PubMed ID: 20446037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental data confirm numerical modeling of the degradation process of magnesium alloys stents.
    Wu W; Chen S; Gastaldi D; Petrini L; Mantovani D; Yang K; Tan L; Migliavacca F
    Acta Biomater; 2013 Nov; 9(10):8730-9. PubMed ID: 23128160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Mechanical analysis on a new type of biodegradable magnesium-alloy stent].
    Wang X; Cui F; Li J; Zhao X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Apr; 26(2):338-41. PubMed ID: 19499798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A quantitative study on magnesium alloy stent biodegradation.
    Gao Y; Wang L; Gu X; Chu Z; Guo M; Fan Y
    J Biomech; 2018 Jun; 74():98-105. PubMed ID: 29735265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of Mg alloy tubes for biodegradable stent application.
    Hanada K; Matsuzaki K; Huang X; Chino Y
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4746-50. PubMed ID: 24094183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing the design of a bioabsorbable metal stent using computer simulation methods.
    Grogan JA; Leen SB; McHugh PE
    Biomaterials; 2013 Nov; 34(33):8049-60. PubMed ID: 23906516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plastic strains during stent deployment have a critical influence on the rate of corrosion in absorbable magnesium stents.
    Galvin E; Cummins C; Yoshihara S; Mac Donald BJ; Lally C
    Med Biol Eng Comput; 2017 Aug; 55(8):1261-1275. PubMed ID: 27785607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparing coronary stent material performance on a common geometric platform through simulated bench testing.
    Grogan JA; Leen SB; McHugh PE
    J Mech Behav Biomed Mater; 2012 Aug; 12():129-38. PubMed ID: 22705476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A numerical corrosion-fatigue model for biodegradable Mg alloy stents.
    Shen Z; Zhao M; Zhou X; Yang H; Liu J; Guo H; Zheng Y; Yang JA
    Acta Biomater; 2019 Oct; 97():671-680. PubMed ID: 31394294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuum damage model for bioresorbable magnesium alloy devices - Application to coronary stents.
    Gastaldi D; Sassi V; Petrini L; Vedani M; Trasatti S; Migliavacca F
    J Mech Behav Biomed Mater; 2011 Apr; 4(3):352-65. PubMed ID: 21316623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-Objective Optimization of Bioresorbable Magnesium Alloy Stent by Kriging Surrogate Model.
    Wang H; Jiao L; Sun J; Yan P; Wang X; Qiu T
    Cardiovasc Eng Technol; 2022 Dec; 13(6):829-839. PubMed ID: 35414048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A strain-mediated corrosion model for bioabsorbable metallic stents.
    Galvin E; O'Brien D; Cummins C; Mac Donald BJ; Lally C
    Acta Biomater; 2017 Jun; 55():505-517. PubMed ID: 28433790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developments in metallic biodegradable stents.
    Hermawan H; Dubé D; Mantovani D
    Acta Biomater; 2010 May; 6(5):1693-7. PubMed ID: 19815097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent advances on the development of magnesium alloys for biodegradable implants.
    Chen Y; Xu Z; Smith C; Sankar J
    Acta Biomater; 2014 Nov; 10(11):4561-4573. PubMed ID: 25034646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A feasibility study of biodegradable magnesium-aluminum-zinc-calcium-manganese (AZXM) alloys for tracheal stent application.
    Wu J; Lee B; Saha P; N Kumta P
    J Biomater Appl; 2019 Mar; 33(8):1080-1093. PubMed ID: 30717611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Development of biodegradable magnesium-based biomaterials].
    Zhu S; Xu L; Huang N
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Apr; 26(2):437-9, 451. PubMed ID: 19499820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flow-induced corrosion behavior of absorbable magnesium-based stents.
    Wang J; Giridharan V; Shanov V; Xu Z; Collins B; White L; Jang Y; Sankar J; Huang N; Yun Y
    Acta Biomater; 2014 Dec; 10(12):5213-5223. PubMed ID: 25200844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Corrosive degradation of magnesium and its alloy as endovascular stent].
    Chen S; Lu A; Hu X; Yu D
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2011 Dec; 28(6):1246-50. PubMed ID: 22295723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro and in vivo corrosion measurements of Mg-6Zn alloys in the bile.
    Chen Y; Yan J; Wang Z; Yu S; Wang X; Yuan Z; Zhang X; Zhao C; Zheng Q
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():116-23. PubMed ID: 25063100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.