BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

373 related articles for article (PubMed ID: 25063295)

  • 41. Strategies for Editing Virulent Staphylococcal Phages Using CRISPR-Cas10.
    Bari SMN; Walker FC; Cater K; Aslan B; Hatoum-Aslan A
    ACS Synth Biol; 2017 Dec; 6(12):2316-2325. PubMed ID: 28885820
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The CRISPR-Cas system - from bacterial immunity to genome engineering.
    Czarnek M; Bereta J
    Postepy Hig Med Dosw (Online); 2016 Sep; 70(0):901-16. PubMed ID: 27594566
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A jumbo phage that forms a nucleus-like structure evades CRISPR-Cas DNA targeting but is vulnerable to type III RNA-based immunity.
    Malone LM; Warring SL; Jackson SA; Warnecke C; Gardner PP; Gumy LF; Fineran PC
    Nat Microbiol; 2020 Jan; 5(1):48-55. PubMed ID: 31819217
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cheese, phages and anti-CRISPRs.
    Davidson AR
    Nat Microbiol; 2017 Oct; 2(10):1338-1339. PubMed ID: 29046529
    [No Abstract]   [Full Text] [Related]  

  • 45. Characterization of a Type II-A CRISPR-Cas System in
    Mosterd C; Moineau S
    mSphere; 2020 Jun; 5(3):. PubMed ID: 32581075
    [No Abstract]   [Full Text] [Related]  

  • 46. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system.
    Liang Z; Zhang K; Chen K; Gao C
    J Genet Genomics; 2014 Feb; 41(2):63-8. PubMed ID: 24576457
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A functional type II-A CRISPR-Cas system from Listeria enables efficient genome editing of large non-integrating bacteriophage.
    Hupfeld M; Trasanidou D; Ramazzini L; Klumpp J; Loessner MJ; Kilcher S
    Nucleic Acids Res; 2018 Jul; 46(13):6920-6933. PubMed ID: 30053228
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Delivery of CRISPR-Cas systems using phage-based vectors.
    Fage C; Lemire N; Moineau S
    Curr Opin Biotechnol; 2021 Apr; 68():174-180. PubMed ID: 33360715
    [TBL] [Abstract][Full Text] [Related]  

  • 49. CRISPR-Cas systems for editing, regulating and targeting genomes.
    Sander JD; Joung JK
    Nat Biotechnol; 2014 Apr; 32(4):347-55. PubMed ID: 24584096
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Variability in the durability of CRISPR-Cas immunity.
    Chabas H; Nicot A; Meaden S; Westra ER; Tremblay DM; Pradier L; Lion S; Moineau S; Gandon S
    Philos Trans R Soc Lond B Biol Sci; 2019 May; 374(1772):20180097. PubMed ID: 30905283
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Meet the Anti-CRISPRs: Widespread Protein Inhibitors of CRISPR-Cas Systems.
    Hwang S; Maxwell KL
    CRISPR J; 2019 Feb; 2(1):23-30. PubMed ID: 31021234
    [TBL] [Abstract][Full Text] [Related]  

  • 52. CRISPR-Cas System: History and Prospects as a Genome Editing Tool in Microorganisms.
    Javed MR; Sadaf M; Ahmed T; Jamil A; Nawaz M; Abbas H; Ijaz A
    Curr Microbiol; 2018 Dec; 75(12):1675-1683. PubMed ID: 30078067
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Selection and Validation of Spacer Sequences for CRISPR-Cas9 Genome Editing and Transcription Regulation in Bacteria.
    Grenier F; Lucier JF; Rodrigue S
    Methods Mol Biol; 2015; 1334():233-44. PubMed ID: 26404154
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Editing of the Bacillus subtilis Genome by the CRISPR-Cas9 System.
    Altenbuchner J
    Appl Environ Microbiol; 2016 Sep; 82(17):5421-7. PubMed ID: 27342565
    [TBL] [Abstract][Full Text] [Related]  

  • 55. CRISPR-Cas9 and CRISPR-Assisted Cytidine Deaminase Enable Precise and Efficient Genome Editing in Klebsiella pneumoniae.
    Wang Y; Wang S; Chen W; Song L; Zhang Y; Shen Z; Yu F; Li M; Ji Q
    Appl Environ Microbiol; 2018 Dec; 84(23):. PubMed ID: 30217854
    [No Abstract]   [Full Text] [Related]  

  • 56. Procedures for Generating CRISPR Mutants with Novel Spacers Acquired from Viruses or Plasmids.
    Dupuis MÈ; Barrangou R; Moineau S
    Methods Mol Biol; 2015; 1311():195-222. PubMed ID: 25981475
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Design of a CRISPR-Cas system to increase resistance of Bacillus subtilis to bacteriophage SPP1.
    Jakutyte-Giraitiene L; Gasiunas G
    J Ind Microbiol Biotechnol; 2016 Aug; 43(8):1183-8. PubMed ID: 27255973
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Engineering of Bacteriophage T4 Genome Using CRISPR-Cas9.
    Tao P; Wu X; Tang WC; Zhu J; Rao V
    ACS Synth Biol; 2017 Oct; 6(10):1952-1961. PubMed ID: 28657724
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Advancing biotechnology with CRISPR/Cas9: recent applications and patent landscape.
    Ferreira R; David F; Nielsen J
    J Ind Microbiol Biotechnol; 2018 Jul; 45(7):467-480. PubMed ID: 29362972
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Novel Genus of Phages Infecting Streptococcus thermophilus: Genomic and Morphological Characterization.
    Philippe C; Levesque S; Dion MB; Tremblay DM; Horvath P; Lüth N; Cambillau C; Franz C; Neve H; Fremaux C; Heller KJ; Moineau S
    Appl Environ Microbiol; 2020 Jun; 86(13):. PubMed ID: 32303549
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.