These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 25063929)

  • 21. Humic acid facilitates the transport of ARS-labeled hydroxyapatite nanoparticles in iron oxyhydroxide-coated sand.
    Wang D; Bradford SA; Harvey RW; Gao B; Cang L; Zhou D
    Environ Sci Technol; 2012 Mar; 46(5):2738-45. PubMed ID: 22316080
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Humic acid induced weak attachment of fullerene nC
    Wang Z; Li T; Shen C; Shang J; Shi K; Zhang Y; Li B
    J Contam Hydrol; 2020 May; 231():103630. PubMed ID: 32169749
    [TBL] [Abstract][Full Text] [Related]  

  • 23. TiO2 nanoparticles aggregation and disaggregation in presence of alginate and Suwannee River humic acids. pH and concentration effects on nanoparticle stability.
    Loosli F; Le Coustumer P; Stoll S
    Water Res; 2013 Oct; 47(16):6052-63. PubMed ID: 23969399
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modeling the effects of water content on TiO2 nanoparticles transport in porous media.
    Toloni I; Lehmann F; Ackerer P
    J Contam Hydrol; 2016 Aug; 191():76-87. PubMed ID: 27281313
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transport of nanoparticles with dispersant through biofilm coated drinking water sand filters.
    Li Z; Aly Hassan A; Sahle-Demessie E; Sorial GA
    Water Res; 2013 Nov; 47(17):6457-66. PubMed ID: 24050685
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Aggregation and transport of rutile titanium dioxide nanoparticles with montmorillonite and diatomite in the presence of phosphate in porous sand.
    Guo P; Xu N; Li D; Huangfu X; Li Z
    Chemosphere; 2018 Aug; 204():327-334. PubMed ID: 29674144
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of phosphate and solution pH on the mobility of ZnO nanoparticles in saturated sand.
    Li L; Schuster M
    Sci Total Environ; 2014 Feb; 472():971-8. PubMed ID: 24355393
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 3D silk fibroin scaffold incorporating titanium dioxide (TiO2) nanoparticle (NPs) for tissue engineering.
    Kim JH; Sheikh FA; Ju HW; Park HJ; Moon BM; Lee OJ; Park CH
    Int J Biol Macromol; 2014 Jul; 68():158-68. PubMed ID: 24794196
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cotransport of human adenoviruses with clay colloids and TiO
    Syngouna VI; Chrysikopoulos CV; Kokkinos P; Tselepi MA; Vantarakis A
    Sci Total Environ; 2017 Nov; 598():160-167. PubMed ID: 28441594
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transport behavior of selected nanoparticles with different surface coatings in granular porous media coated with Pseudomonas aeruginosa biofilm.
    Tripathi S; Champagne D; Tufenkji N
    Environ Sci Technol; 2012 Jul; 46(13):6942-9. PubMed ID: 22148225
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Targeted sonocatalytic cancer cell injury using avidin-conjugated titanium dioxide nanoparticles.
    Ninomiya K; Fukuda A; Ogino C; Shimizu N
    Ultrason Sonochem; 2014 Sep; 21(5):1624-8. PubMed ID: 24717690
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced OH radical generation by dual-frequency ultrasound with TiO2 nanoparticles: its application to targeted sonodynamic therapy.
    Ninomiya K; Noda K; Ogino C; Kuroda S; Shimizu N
    Ultrason Sonochem; 2014 Jan; 21(1):289-94. PubMed ID: 23746399
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Antagonistic effects of humic acid and iron oxyhydroxide grain-coating on biochar nanoparticle transport in saturated sand.
    Wang D; Zhang W; Zhou D
    Environ Sci Technol; 2013 May; 47(10):5154-61. PubMed ID: 23614641
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of 17β-estradiol on stability and mobility of TiO2 rutile nanoparticles.
    Lee J; Bartelt-Hunt SL; Li Y; Morton M
    Sci Total Environ; 2015 Apr; 511():195-202. PubMed ID: 25544338
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Distinct interactions of pig and cow manure-derived colloids with TiO
    Yan C; Cheng T; Li B; Shang J
    J Hazard Mater; 2021 Aug; 416():125910. PubMed ID: 34492844
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Attachment efficiency of nanoparticle aggregation in aqueous dispersions: modeling and experimental validation.
    Zhang W; Crittenden J; Li K; Chen Y
    Environ Sci Technol; 2012 Jul; 46(13):7054-62. PubMed ID: 22260181
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Toxicity and interaction of titanium dioxide nanoparticles with microtubule protein.
    Gheshlaghi ZN; Riazi GH; Ahmadian S; Ghafari M; Mahinpour R
    Acta Biochim Biophys Sin (Shanghai); 2008 Sep; 40(9):777-82. PubMed ID: 18776989
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Combined effects of titanium dioxide and humic acid on the bioaccumulation of cadmium in Zebrafish.
    Hu X; Chen Q; Jiang L; Yu Z; Jiang D; Yin D
    Environ Pollut; 2011 May; 159(5):1151-8. PubMed ID: 21376439
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of natural organic matter on the aggregation and deposition of titanium dioxide nanoparticles.
    Thio BJ; Zhou D; Keller AA
    J Hazard Mater; 2011 May; 189(1-2):556-63. PubMed ID: 21429667
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stability of nano-sized titanium dioxide in an aqueous environment: effects of pH, dissolved organic matter and divalent cations.
    Yang XN; Cui FY
    Water Sci Technol; 2013; 68(2):276-82. PubMed ID: 23863417
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.