These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 25064179)

  • 21. Basal forebrain cholinergic modulation of sleep transitions.
    Irmak SO; de Lecea L
    Sleep; 2014 Dec; 37(12):1941-51. PubMed ID: 25325504
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Channelrhodopsin as a tool to investigate synaptic transmission and plasticity.
    Schoenenberger P; Schärer YP; Oertner TG
    Exp Physiol; 2011 Jan; 96(1):34-9. PubMed ID: 20562296
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chemical neuroanatomy of the Drosophila central complex: distribution of multiple neuropeptides in relation to neurotransmitters.
    Kahsai L; Winther AM
    J Comp Neurol; 2011 Feb; 519(2):290-315. PubMed ID: 21165976
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Long-lasting silencing of orexin/hypocretin neurons using archaerhodopsin induces slow-wave sleep in mice.
    Tsunematsu T; Tabuchi S; Tanaka KF; Boyden ES; Tominaga M; Yamanaka A
    Behav Brain Res; 2013 Oct; 255():64-74. PubMed ID: 23707248
    [TBL] [Abstract][Full Text] [Related]  

  • 25. From waking to sleeping: neuronal and chemical substrates.
    Jones BE
    Trends Pharmacol Sci; 2005 Nov; 26(11):578-86. PubMed ID: 16183137
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of Optically and Electrically Evoked Dopamine Release in Striatal Slices from Digenic Knock-in Mice with DAT-Driven Expression of Channelrhodopsin.
    O'Neill B; Patel JC; Rice ME
    ACS Chem Neurosci; 2017 Feb; 8(2):310-319. PubMed ID: 28177213
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis of sleep disorders under pain using an optogenetic tool: possible involvement of the activation of dorsal raphe nucleus-serotonergic neurons.
    Ito H; Yanase M; Yamashita A; Kitabatake C; Hamada A; Suhara Y; Narita M; Ikegami D; Sakai H; Yamazaki M; Narita M
    Mol Brain; 2013 Dec; 6():59. PubMed ID: 24370235
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optogenetic approaches to characterize the long-range synaptic pathways from the hypothalamus to brain stem autonomic nuclei.
    Piñol RA; Bateman R; Mendelowitz D
    J Neurosci Methods; 2012 Sep; 210(2):238-46. PubMed ID: 22890236
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Why Does Sleep Slow-Wave Activity Increase After Extended Wake? Assessing the Effects of Increased Cortical Firing During Wake and Sleep.
    Rodriguez AV; Funk CM; Vyazovskiy VV; Nir Y; Tononi G; Cirelli C
    J Neurosci; 2016 Dec; 36(49):12436-12447. PubMed ID: 27927960
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The control of sleep and wakefulness by mesolimbic dopamine systems.
    Oishi Y; Lazarus M
    Neurosci Res; 2017 May; 118():66-73. PubMed ID: 28434991
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An Optogenetic Approach for Investigation of Excitatory and Inhibitory Network GABA Actions in Mice Expressing Channelrhodopsin-2 in GABAergic Neurons.
    Valeeva G; Tressard T; Mukhtarov M; Baude A; Khazipov R
    J Neurosci; 2016 Jun; 36(22):5961-73. PubMed ID: 27251618
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The role of adenosine in the regulation of sleep.
    Huang ZL; Urade Y; Hayaishi O
    Curr Top Med Chem; 2011; 11(8):1047-57. PubMed ID: 21401496
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation of Lateral Hypothalamic Orexin Activity by Local GABAergic Neurons.
    Ferrari LL; Park D; Zhu L; Palmer MR; Broadhurst RY; Arrigoni E
    J Neurosci; 2018 Feb; 38(6):1588-1599. PubMed ID: 29311142
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Different neuronal phenotypes in the lateral hypothalamus and their role in sleep and wakefulness.
    Gerashchenko D; Shiromani PJ
    Mol Neurobiol; 2004 Feb; 29(1):41-59. PubMed ID: 15034222
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optogenetic and Chemogenetic Approaches To Advance Monitoring Molecules.
    McElligott Z
    ACS Chem Neurosci; 2015 Jul; 6(7):944-7. PubMed ID: 25791746
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The structure of the dorsal raphe nucleus and its relevance to the regulation of sleep and wakefulness.
    Monti JM
    Sleep Med Rev; 2010 Oct; 14(5):307-17. PubMed ID: 20153669
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optogenetic probing of fast glutamatergic transmission from hypocretin/orexin to histamine neurons in situ.
    Schöne C; Cao ZF; Apergis-Schoute J; Adamantidis A; Sakurai T; Burdakov D
    J Neurosci; 2012 Sep; 32(36):12437-43. PubMed ID: 22956835
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optogenetic manipulation of activity and temporally controlled cell-specific ablation reveal a role for MCH neurons in sleep/wake regulation.
    Tsunematsu T; Ueno T; Tabuchi S; Inutsuka A; Tanaka KF; Hasuwa H; Kilduff TS; Terao A; Yamanaka A
    J Neurosci; 2014 May; 34(20):6896-909. PubMed ID: 24828644
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The mechanisms and functions of spontaneous neurotransmitter release.
    Kavalali ET
    Nat Rev Neurosci; 2015 Jan; 16(1):5-16. PubMed ID: 25524119
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The wake-promoting peptide orexin-B inhibits glutamatergic transmission to dorsal raphe nucleus serotonin neurons through retrograde endocannabinoid signaling.
    Haj-Dahmane S; Shen RY
    J Neurosci; 2005 Jan; 25(4):896-905. PubMed ID: 15673670
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.