BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 2506453)

  • 1. Fitness reduction associated with the deletion of a satellite DNA array.
    Wu CI; True JR; Johnson N
    Nature; 1989 Sep; 341(6239):248-51. PubMed ID: 2506453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The organization and evolution of the Responder satellite in species of the Drosophila melanogaster group: dynamic evolution of a target of meiotic drive.
    Larracuente AM
    BMC Evol Biol; 2014 Nov; 14():233. PubMed ID: 25424548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Association between a satellite DNA sequence and the Responder of Segregation Distorter in D. melanogaster.
    Wu CI; Lyttle TW; Wu ML; Lin GF
    Cell; 1988 Jul; 54(2):179-89. PubMed ID: 2839299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental population genetics of meiotic drive systems. I. Pseudo-Y chromosomal drive as a means of eliminating cage populations of Drosophila melanogaster.
    Lyttle TW
    Genetics; 1977 Jun; 86(2 Pt. 1):413-45. PubMed ID: 407130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the components of segregation distortion in Drosophila melanogaster.
    Ganetzky B
    Genetics; 1977 Jun; 86(2 Pt. 1):321-55. PubMed ID: 407128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Satellite DNA in the karyotype evolution of domestic animals--clinical considerations.
    Adega F; Guedes-Pinto H; Chaves R
    Cytogenet Genome Res; 2009; 126(1-2):12-20. PubMed ID: 20016153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutations to the piRNA pathway component aubergine enhance meiotic drive of segregation distorter in Drosophila melanogaster.
    Gell SL; Reenan RA
    Genetics; 2013 Mar; 193(3):771-84. PubMed ID: 23267055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Responder (Rsp) alleles in the segregation distorter (SD) system of meiotic drive in Drosophila may represent a complex family of satellite repeat sequences.
    Houtchens K; Lyttle TW
    Genetica; 2003 Mar; 117(2-3):291-302. PubMed ID: 12723708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Satellite DNAs between selfishness and functionality: structure, genomics and evolution of tandem repeats in centromeric (hetero)chromatin.
    Plohl M; Luchetti A; Mestrović N; Mantovani B
    Gene; 2008 Feb; 409(1-2):72-82. PubMed ID: 18182173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinct spermiogenic phenotypes underlie sperm elimination in the Segregation Distorter meiotic drive system.
    Herbette M; Wei X; Chang CH; Larracuente AM; Loppin B; Dubruille R
    PLoS Genet; 2021 Jul; 17(7):e1009662. PubMed ID: 34228705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The selfish Segregation Distorter gene complex of Drosophila melanogaster.
    Larracuente AM; Presgraves DC
    Genetics; 2012 Sep; 192(1):33-53. PubMed ID: 22964836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Normal segregation of a foreign-species chromosome during Drosophila female meiosis despite extensive heterochromatin divergence.
    Gilliland WD; Colwell EM; Osiecki DM; Park S; Lin D; Rathnam C; Barbash DA
    Genetics; 2015 Jan; 199(1):73-83. PubMed ID: 25406466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Segregation distortion in Drosophila melanogaster: genomic organization of Responder sequences.
    Moschetti R; Caizzi R; Pimpinelli S
    Genetics; 1996 Dec; 144(4):1365-71. PubMed ID: 8978053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sex-ratio meiotic drive in Drosophila simulans: cellular mechanism, candidate genes and evolution.
    Montchamp-Moreau C
    Biochem Soc Trans; 2006 Aug; 34(Pt 4):562-5. PubMed ID: 16856861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular analysis of the responder satellite DNA in Drosophila melanogaster: DNA bending, nucleosome structure, and Rsp-binding proteins.
    Doshi P; Kaushal S; Benyajati C; Wu CI
    Mol Biol Evol; 1991 Sep; 8(5):721-41. PubMed ID: 1722553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [The frequency distribution and establishment of fruit fly strain of segregation distorter in Drosophila melanogaster in China].
    Hao L; Gu ZL; Dai ZH
    Yi Chuan Xue Bao; 2000; 27(4):298-303. PubMed ID: 11147347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DDP1, a single-stranded nucleic acid-binding protein of Drosophila, associates with pericentric heterochromatin and is functionally homologous to the yeast Scp160p, which is involved in the control of cell ploidy.
    Cortés A; Huertas D; Fanti L; Pimpinelli S; Marsellach FX; Piña B; Azorín F
    EMBO J; 1999 Jul; 18(13):3820-33. PubMed ID: 10393197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcription of the 1.688 satellite DNA family is under the control of RNA interference machinery in Drosophila melanogaster ovaries.
    Usakin L; Abad J; Vagin VV; de Pablos B; Villasante A; Gvozdev VA
    Genetics; 2007 Jun; 176(2):1343-9. PubMed ID: 17409066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drosophila Satellite Repeats at the Intersection of Chromatin, Gene Regulation and Evolution.
    Lauria Sneideman MP; Meller VH
    Prog Mol Subcell Biol; 2021; 60():1-26. PubMed ID: 34386870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Population genetics of tandem repeats in centromeric heterochromatin: unequal crossing over and chromosomal divergence at the Responder locus of Drosophila melanogaster.
    Cabot EL; Doshi P; Wu ML; Wu CI
    Genetics; 1993 Oct; 135(2):477-87. PubMed ID: 8244009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.