These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 25064652)

  • 1. Effects of metal ions on growth, β-oxidation system, and thioesterase activity of Lactococcus lactis.
    Li L; Ma Y
    J Dairy Sci; 2014 Oct; 97(10):5975-82. PubMed ID: 25064652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of fatty acids on the β-oxidation system and thioesterase of Lactococcus lactis subspecies lactis.
    Li L; Ma Y
    J Dairy Sci; 2013 Apr; 96(4):2003-2010. PubMed ID: 23462166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of fatty acid oxidation disorder patients with lowered acyl-CoA thioesterase activity in human skin fibroblasts.
    Hunt MC; Ruiter J; Mooyer P; van Roermond CW; Ofman R; Ijlst L; Wanders RJ
    Eur J Clin Invest; 2005 Jan; 35(1):38-46. PubMed ID: 15638818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Only one of the two annotated Lactococcus lactis fabG genes encodes a functional beta-ketoacyl-acyl carrier protein reductase.
    Wang H; Cronan JE
    Biochemistry; 2004 Sep; 43(37):11782-9. PubMed ID: 15362862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of beta-oxidation and thioesterase activities in Staphylococcus carnosus 833 strain.
    Engelvin G; Feron G; Perrin C; Mollé D; Talon R
    FEMS Microbiol Lett; 2000 Sep; 190(1):115-20. PubMed ID: 10981700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Significance of catalase in peroxisomal fatty acyl-CoA beta-oxidation.
    Hashimoto F; Hayashi H
    Biochim Biophys Acta; 1987 Sep; 921(1):142-50. PubMed ID: 2887206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced free fatty acid production by codon-optimized Lactococcus lactis acyl-ACP thioesterase gene expression in Escherichia coli using crude glycerol.
    Lee S; Park S; Park C; Pack SP; Lee J
    Enzyme Microb Technol; 2014 Dec; 67():8-16. PubMed ID: 25442943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Skeletal muscle group VIA phospholipase A2 (iPLA2beta): expression and role in fatty acid oxidation.
    Carper MJ; Zhang S; Turk J; Ramanadham S
    Biochemistry; 2008 Nov; 47(46):12241-9. PubMed ID: 18937505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A synthetic biology approach to engineer a functional reversal of the β-oxidation cycle.
    Clomburg JM; Vick JE; Blankschien MD; Rodríguez-Moyá M; Gonzalez R
    ACS Synth Biol; 2012 Nov; 1(11):541-54. PubMed ID: 23656231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increasing the heme-dependent respiratory efficiency of Lactococcus lactis by inhibition of lactate dehydrogenase.
    Arioli S; Zambelli D; Guglielmetti S; De Noni I; Pedersen MB; Pedersen PD; Dal Bello F; Mora D
    Appl Environ Microbiol; 2013 Jan; 79(1):376-80. PubMed ID: 23064338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-enzymic copper reduction by menaquinone enhances copper toxicity in Lactococcus lactis IL1403.
    Abicht HK; Gonskikh Y; Gerber SD; Solioz M
    Microbiology (Reading); 2013 Jun; 159(Pt 6):1190-1197. PubMed ID: 23579688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of hemin effect on lactate reduction in Lactococcus lactis.
    Nagayasu M; Wardani AK; Nagahisa K; Shimizu H; Shioya S
    J Biosci Bioeng; 2007 Jun; 103(6):529-34. PubMed ID: 17630124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvement of the respiration efficiency of Lactococcus lactis by decreasing the culture pH.
    Shi W; Li Y; Gao X; Fu R
    Biotechnol Lett; 2016 Mar; 38(3):495-501. PubMed ID: 26585330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic engineering of β-oxidation to leverage thioesterases for production of 2-heptanone, 2-nonanone and 2-undecanone.
    Yan Q; Simmons TR; Cordell WT; Hernández Lozada NJ; Breckner CJ; Chen X; Jindra MA; Pfleger BF
    Metab Eng; 2020 Sep; 61():335-343. PubMed ID: 32479802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined enzyme defect of mitochondrial fatty acid oxidation.
    Jackson S; Kler RS; Bartlett K; Briggs H; Bindoff LA; Pourfarzam M; Gardner-Medwin D; Turnbull DM
    J Clin Invest; 1992 Oct; 90(4):1219-25. PubMed ID: 1401059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and characterization of Escherichia coli thioesterase III that functions in fatty acid beta-oxidation.
    Nie L; Ren Y; Schulz H
    Biochemistry; 2008 Jul; 47(29):7744-51. PubMed ID: 18576672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 4-bromotiglic acid, a novel inhibitor of thiolases and a tool for assessing the cooperation between the membrane-bound and soluble beta-oxidation systems of rat liver mitochondria.
    Liang X; Schulz H
    Biochemistry; 1998 Nov; 37(44):15548-54. PubMed ID: 9799519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduction of beta-oxidation capacity of rat liver mitochondria by feeding orotic acid.
    Miyazawa S; Furuta S; Hashimoto T
    Biochim Biophys Acta; 1982 Jun; 711(3):494-502. PubMed ID: 7104378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel paradigm of fatty acid beta-oxidation exemplified by the thioesterase-dependent partial degradation of conjugated linoleic acid that fully supports growth of Escherichia coli.
    Nie L; Ren Y; Janakiraman A; Smith S; Schulz H
    Biochemistry; 2008 Sep; 47(36):9618-26. PubMed ID: 18702504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth stimulation of a proteinase positive Lactococcus lactis strain by a proteinase negative Lactococcus lactis strain.
    Picon A; Nuñez M
    Int J Food Microbiol; 2007 Nov; 119(3):308-13. PubMed ID: 17905459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.