BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 2506494)

  • 1. Hypersensitivity to alpha-methyl-p-tyrosine suggests that behavioural recovery of rats receiving neonatal 6-OHDA lesions is mediated by residual catecholamine neurones.
    Rogers DC; Dunnett SB
    Neurosci Lett; 1989 Jul; 102(1):108-13. PubMed ID: 2506494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Food intake of rats depleted of dopamine as neonates is impaired by inhibition of catecholamine biosynthesis.
    Potter BM; Bruno JP
    Neurosci Lett; 1989 Dec; 107(1-3):295-300. PubMed ID: 2515502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. alpha-Methyl-p-tyrosine pretreatment partially prevents methamphetamine-induced endogenous neurotoxin formation.
    Axt KJ; Commins DL; Vosmer G; Seiden LS
    Brain Res; 1990 May; 515(1-2):269-76. PubMed ID: 2113413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential effects of alpha-methyl-p-tyrosine and 6-hydroxydopamine on pentylenetetrazol seizures in mice.
    Abed WT
    Pharmacol Biochem Behav; 1986 Nov; 25(5):949-52. PubMed ID: 3097680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pharmacological model of catecholamine depletion in the hypothalamus of fetal and neonatal rats and its application.
    Bernabe J; Proshlyakova E; Sapronova A; Trembleau A; Calas A; Ugrumov M
    Cell Mol Neurobiol; 1996 Dec; 16(6):617-24. PubMed ID: 9013026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of manipulating central catecholamines on puberty and the surge of luteinizing hormone and gonadotropin releasing hormone induced by pregnant mare serum gonadotropin in female rats.
    Sarkar DK; Smith GC; Fink G
    Brain Res; 1981 Jun; 213(2):335-49. PubMed ID: 6113874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hyperactivity in neonatally dopamine-lesioned rats requires residual activity in mesolimbic dopamine neurons.
    Luthman J; Lindqvist E; Ogren SO
    Pharmacol Biochem Behav; 1995 May; 51(1):159-63. PubMed ID: 7617728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of dopamine depletion upon the K(+)-evoked release of CCK from superfused striatal slices.
    Sierralta J; Gysling K
    Neurosci Lett; 1990 May; 112(2-3):313-7. PubMed ID: 2113658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noradrenaline turnover in the tissues of uraemic rats.
    Ksiazek A; Solski J
    Int Urol Nephrol; 1990; 22(1):89-93. PubMed ID: 2116379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of male rat copulatory behavior by preoptic incertohypothalamic dopamine neurons.
    Bitran D; Hull EM; Holmes GM; Lookingland KJ
    Brain Res Bull; 1988 Mar; 20(3):323-31. PubMed ID: 3130153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CNS mediated inhibition of gastric secretion by bombesin: independence from interaction with brain catecholaminergic, and serotoninergic pathways and pituitary hormones.
    Taché Y; Collu R
    Regul Pept; 1982 Jan; 3(1):51-9. PubMed ID: 6119742
    [No Abstract]   [Full Text] [Related]  

  • 12. Catecholamine-angiotensin II receptor interaction in primary cultures of rat brain.
    Sumners C; Raizada MK
    Am J Physiol; 1984 May; 246(5 Pt 1):C502-9. PubMed ID: 6144276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influences of catecholamines on growth hormone release in female goldfish, Carassius auratus.
    Chang JP; Marchant TA; Cook AF; Nahorniak CS; Peter RE
    Neuroendocrinology; 1985 Jun; 40(6):463-70. PubMed ID: 3925362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects on brain cholecystokinin-8-sulfate and serotonin in adult rats after neonatal reduction of catecholamines.
    Yamamoto H; Kato T
    Neurosci Res; 1988 Feb; 5(3):265-71. PubMed ID: 2451793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for involvement of brain dopamine and other mechanisms in the behavioral action of the N-methyl-D-aspartic acid antagonist MK-801 in control and 6-hydroxydopamine-lesioned rats.
    Criswell HE; Johnson KB; Mueller RA; Breese GR
    J Pharmacol Exp Ther; 1993 May; 265(2):1001-10. PubMed ID: 8098756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective enhancement of the lordotic component of female sexual behavior in rats following destruction of central catecholamine-containing systems.
    Herndon JG; Caggiula AR; Sharp D; Ellis D; Redgate E
    Brain Res; 1978 Feb; 141(1):137-51. PubMed ID: 624069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Roles of catecholamine terminals and intrinsic neurons of the ventral tegmentum in self-stimulation investigated in neonatally dopamine-depleted rats.
    Takeichi T; Kurumiya S; Umemoto M; Olds ME
    Pharmacol Biochem Behav; 1986 Apr; 24(4):1101-9. PubMed ID: 3086902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Depletion of central catecholamines reduces pressor responses to arginine vasopressin.
    Franklin L; Bauce L; Pittman QJ
    Brain Res; 1988 Jan; 438(1-2):295-8. PubMed ID: 3125946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Changes in the dopamine content in the brain of Periplaneta americana L. after application of structural analogs of dopamine and reserpine].
    Prée J; Rutschke E
    Biomed Biochim Acta; 1983; 42(4):407-12. PubMed ID: 6226288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Further studies on the neurochemical mechanisms mediating differences in ethanol sensitivity in LS and SS mice.
    French TA; Masserano JM; Weiner N
    Alcohol Clin Exp Res; 1988 Apr; 12(2):215-23. PubMed ID: 2897802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.