These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 2506523)

  • 21. Evidence that acetylcholine-mediated hyperpolarization of the rat small mesenteric artery does not involve the K+ channel opened by cromakalim.
    McPherson GA; Angus JA
    Br J Pharmacol; 1991 May; 103(1):1184-90. PubMed ID: 1908733
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The dualistic mode of action of the vasodilator drug, nicorandil, differentiated by glibenclamide in 86Rb flux studies in rabbit isolated vascular smooth muscle.
    Kreye VA; Lenz T; Theiss U
    Naunyn Schmiedebergs Arch Pharmacol; 1991 Jan; 343(1):70-5. PubMed ID: 1827659
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Some degree of overlap exists between the K(+)-channels opened by cromakalim and those opened by minoxidil sulphate in rat isolated aorta.
    Bray K; Quast U
    Naunyn Schmiedebergs Arch Pharmacol; 1991 Sep; 344(3):351-9. PubMed ID: 1961260
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The sensitivity of coronary vascular tone to glibenclamide: a study on the isolated perfused guinea pig heart.
    Cyrys S; Daut J
    Cardiovasc Res; 1994 Jun; 28(6):888-93. PubMed ID: 7923296
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evidence that imidazol(id)ine- and sulphonylurea-based antagonists of cromakalim act at different sites in the rat thoracic aorta.
    Challinor JL; McPherson GA
    Clin Exp Pharmacol Physiol; 1993; 20(7-8):467-75. PubMed ID: 8403526
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A glibenclamide sensitive potassium conductance in terminal arterioles isolated from guinea pig heart.
    Klieber HG; Daut J
    Cardiovasc Res; 1994 Jun; 28(6):823-30. PubMed ID: 7923286
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of potassium currents modulated by BRL 38227 in rat portal vein.
    Noack T; Deitmer P; Edwards G; Weston AH
    Br J Pharmacol; 1992 Jul; 106(3):717-26. PubMed ID: 1504756
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The action of diazoxide and minoxidil sulphate on rat blood vessels: a comparison with cromakalim.
    Newgreen DT; Bray KM; McHarg AD; Weston AH; Duty S; Brown BS; Kay PB; Edwards G; Longmore J; Southerton JS
    Br J Pharmacol; 1990 Jul; 100(3):605-13. PubMed ID: 2167738
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis of relaxation and repolarization mechanisms of nicorandil in rat mesenteric artery.
    Fujiwara T; Angus JA
    Br J Pharmacol; 1996 Dec; 119(8):1549-56. PubMed ID: 8982500
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The individual enantiomers of cis-cromakalim possess K+ channel opening activity.
    Quast U; Villhauer EB
    Eur J Pharmacol; 1993 Apr; 245(2):165-71. PubMed ID: 8491256
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of glibenclamide on cromakalim-induced responses in rabbit isolated aorta.
    Bray KM; Duty S; Weston AH
    Br J Pharmacol; 1989 Dec; 98 Suppl():806P. PubMed ID: 2514954
    [No Abstract]   [Full Text] [Related]  

  • 32. Potassium channel openers act through an activation of ATP-sensitive K+ channels in guinea-pig cardiac myocytes.
    Escande D; Thuringer D; Le Guern S; Courteix J; Laville M; Cavero I
    Pflugers Arch; 1989 Sep; 414(6):669-75. PubMed ID: 2510125
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparative effects of the potassium channel openers cromakalim and pinacidil and the cromakalim analog U-89232 on isolated vascular and cardiac tissue.
    Norman NR; Toombs CF; Khan SA; Buchanan LV; Cimini MG; Gibson JK; Meisheri KD; Shebuski RJ
    Pharmacology; 1994 Aug; 49(2):86-95. PubMed ID: 7972325
    [TBL] [Abstract][Full Text] [Related]  

  • 34. ATP-sensitive potassium channels in smooth muscle cells from guinea pig urinary bladder.
    Bonev AD; Nelson MT
    Am J Physiol; 1993 May; 264(5 Pt 1):C1190-200. PubMed ID: 8498480
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of cromakalim and glibenclamide on spontaneous and evoked motility of the guinea-pig isolated renal pelvis and ureter.
    Maggi CA; Giuliani S; Santicioli P
    Br J Pharmacol; 1994 Mar; 111(3):687-94. PubMed ID: 8019747
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of glibenclamide, forskolin, and isoprenaline on the parallel activation of KATP and reduction of IK by cromakalim in cardiac myocytes.
    Heath BM; Terrar DA
    Cardiovasc Res; 1994 Jun; 28(6):818-22. PubMed ID: 7923285
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanisms of action of the dilatory response to calcitonin gene-related peptide in guinea pig basilary artery.
    Nilsson L; Edvinsson L; Jansen I
    Ann N Y Acad Sci; 1992 Jun; 657():510-2. PubMed ID: 1379023
    [No Abstract]   [Full Text] [Related]  

  • 38. Cromakalim (BRL 34915) acts on an inwardly rectifying neuronal K+ conductance, which is similar to that activated by adenosine.
    Alzheimer C; Sutor B; ten Bruggencate G
    Pflugers Arch; 1989; 414 Suppl 1():S121-2. PubMed ID: 2780226
    [No Abstract]   [Full Text] [Related]  

  • 39. Dissimilarity in the mechanisms of action of KRN2391, nicorandil and cromakalim in canine renal artery.
    Kasai H; Fukata Y; Harada K; Fukushima H; Ogawa N
    J Pharm Pharmacol; 1993 Mar; 45(3):222-4. PubMed ID: 8097782
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Alterations by glyburide of effects of BRL 34915 and P 1060 on contraction, 86Rb efflux and the maxi-K+ channel in rat portal vein.
    Hu SL; Kim HS; Okolie P; Weiss GB
    J Pharmacol Exp Ther; 1990 May; 253(2):771-7. PubMed ID: 2110977
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.