These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 25065343)

  • 1. High-temperature superfluidity with indirect excitons in van der Waals heterostructures.
    Fogler MM; Butov LV; Novoselov KS
    Nat Commun; 2014 Jul; 5():4555. PubMed ID: 25065343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Indirect excitons in van der Waals heterostructures at room temperature.
    Calman EV; Fogler MM; Butov LV; Hu S; Mishchenko A; Geim AK
    Nat Commun; 2018 May; 9(1):1895. PubMed ID: 29760404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Indirect Excitons and Trions in MoSe
    Calman EV; Fowler-Gerace LH; Choksy DJ; Butov LV; Nikonov DE; Young IA; Hu S; Mishchenko A; Geim AK
    Nano Lett; 2020 Mar; 20(3):1869-1875. PubMed ID: 32069058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrafast transition between exciton phases in van der Waals heterostructures.
    Merkl P; Mooshammer F; Steinleitner P; Girnghuber A; Lin KQ; Nagler P; Holler J; Schüller C; Lupton JM; Korn T; Ovesen S; Brem S; Malic E; Huber R
    Nat Mater; 2019 Jul; 18(7):691-696. PubMed ID: 30962556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interlayer excitons in a bulk van der Waals semiconductor.
    Arora A; Drüppel M; Schmidt R; Deilmann T; Schneider R; Molas MR; Marauhn P; Michaelis de Vasconcellos S; Potemski M; Rohlfing M; Bratschitsch R
    Nat Commun; 2017 Sep; 8(1):639. PubMed ID: 28935879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-Lived Direct and Indirect Interlayer Excitons in van der Waals Heterostructures.
    Miller B; Steinhoff A; Pano B; Klein J; Jahnke F; Holleitner A; Wurstbauer U
    Nano Lett; 2017 Sep; 17(9):5229-5237. PubMed ID: 28742367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrical control of interlayer exciton dynamics in atomically thin heterostructures.
    Jauregui LA; Joe AY; Pistunova K; Wild DS; High AA; Zhou Y; Scuri G; De Greve K; Sushko A; Yu CH; Taniguchi T; Watanabe K; Needleman DJ; Lukin MD; Park H; Kim P
    Science; 2019 Nov; 366(6467):870-875. PubMed ID: 31727834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimulated scattering of indirect excitons in coupled quantum wells: signature of a degenerate Bose-gas of excitons.
    Butov LV; Ivanov AL; Imamoglu A; Littlewood PB; Shashkin AA; Dolgopolov VT; Campman KL; Gossard AC
    Phys Rev Lett; 2001 Jun; 86(24):5608-11. PubMed ID: 11415313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spontaneous coherence in a cold exciton gas.
    High AA; Leonard JR; Hammack AT; Fogler MM; Butov LV; Kavokin AV; Campman KL; Gossard AC
    Nature; 2012 Mar; 483(7391):584-8. PubMed ID: 22437498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vortices and superfluidity in a strongly interacting Fermi gas.
    Zwierlein MW; Abo-Shaeer JR; Schirotzek A; Schunck CH; Ketterle W
    Nature; 2005 Jun; 435(7045):1047-51. PubMed ID: 15973400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resonance superfluidity in a quantum degenerate Fermi gas.
    Holland M; Kokkelmans SJ; Chiofalo ML; Walser R
    Phys Rev Lett; 2001 Sep; 87(12):120406. PubMed ID: 11580493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tightly Bound Trions in Transition Metal Dichalcogenide Heterostructures.
    Bellus MZ; Ceballos F; Chiu HY; Zhao H
    ACS Nano; 2015 Jun; 9(6):6459-64. PubMed ID: 26046238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superfluidity of Dipolar Excitons in a Double Layer of
    Berman OL; Gumbs G; Martins GP; Fekete P
    Nanomaterials (Basel); 2022 Apr; 12(9):. PubMed ID: 35564146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards Bose-Einstein condensation of excitons in potential traps.
    Butov LV; Lai CW; Ivanov AL; Gossard AC; Chemla DS
    Nature; 2002 May; 417(6884):47-52. PubMed ID: 11986661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bose-Einstein condensation and indirect excitons: a review.
    Combescot M; Combescot R; Dubin F
    Rep Prog Phys; 2017 Jun; 80(6):066501. PubMed ID: 28355164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrafast charge separation and indirect exciton formation in a MoS2-MoSe2 van der Waals heterostructure.
    Ceballos F; Bellus MZ; Chiu HY; Zhao H
    ACS Nano; 2014 Dec; 8(12):12717-24. PubMed ID: 25402669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emergence of a molecular Bose-Einstein condensate from a Fermi gas.
    Greiner M; Regal CA; Jin DS
    Nature; 2003 Dec; 426(6966):537-40. PubMed ID: 14647340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for superfluidity of ultracold fermions in an optical lattice.
    Chin JK; Miller DE; Liu Y; Stan C; Setiawan W; Sanner C; Xu K; Ketterle W
    Nature; 2006 Oct; 443(7114):961-4. PubMed ID: 17066028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Signatures of exciton condensation in a transition metal dichalcogenide.
    Kogar A; Rak MS; Vig S; Husain AA; Flicker F; Joe YI; Venema L; MacDougall GJ; Chiang TC; Fradkin E; van Wezel J; Abbamonte P
    Science; 2017 Dec; 358(6368):1314-1317. PubMed ID: 29217574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomic Bose-Fermi mixtures in an optical lattice.
    Lewenstein M; Santos L; Baranov MA; Fehrmann H
    Phys Rev Lett; 2004 Feb; 92(5):050401. PubMed ID: 14995287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.