These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 25065365)

  • 1. Controllable copper deficiency in Cu2-xSe nanocrystals with tunable localized surface plasmon resonance and enhanced chemiluminescence.
    Lie SQ; Wang DM; Gao MX; Huang CZ
    Nanoscale; 2014 Sep; 6(17):10289-96. PubMed ID: 25065365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shedding light on vacancy-doped copper chalcogenides: shape-controlled synthesis, optical properties, and modeling of copper telluride nanocrystals with near-infrared plasmon resonances.
    Kriegel I; Rodríguez-Fernández J; Wisnet A; Zhang H; Waurisch C; Eychmüller A; Dubavik A; Govorov AO; Feldmann J
    ACS Nano; 2013 May; 7(5):4367-77. PubMed ID: 23570329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning the excitonic and plasmonic properties of copper chalcogenide nanocrystals.
    Kriegel I; Jiang C; Rodríguez-Fernández J; Schaller RD; Talapin DV; da Como E; Feldmann J
    J Am Chem Soc; 2012 Jan; 134(3):1583-90. PubMed ID: 22148506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Copper sulfide nanocrystals with tunable composition by reduction of covellite nanocrystals with Cu+ ions.
    Xie Y; Riedinger A; Prato M; Casu A; Genovese A; Guardia P; Sottini S; Sangregorio C; Miszta K; Ghosh S; Pellegrino T; Manna L
    J Am Chem Soc; 2013 Nov; 135(46):17630-7. PubMed ID: 24128337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monodisperse Copper Chalcogenide Nanocrystals: Controllable Synthesis and the Pinning of Plasmonic Resonance Absorption.
    Wang F; Li Q; Lin L; Peng H; Liu Z; Xu D
    J Am Chem Soc; 2015 Sep; 137(37):12006-12. PubMed ID: 26317687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative study on the localized surface plasmon resonance of boron- and phosphorus-doped silicon nanocrystals.
    Zhou S; Pi X; Ni Z; Ding Y; Jiang Y; Jin C; Delerue C; Yang D; Nozaki T
    ACS Nano; 2015 Jan; 9(1):378-86. PubMed ID: 25551330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metallic-like stoichiometric copper sulfide nanocrystals: phase- and shape-selective synthesis, near-infrared surface plasmon resonance properties, and their modeling.
    Xie Y; Carbone L; Nobile C; Grillo V; D'Agostino S; Della Sala F; Giannini C; Altamura D; Oelsner C; Kryschi C; Cozzoli PD
    ACS Nano; 2013 Aug; 7(8):7352-69. PubMed ID: 23859591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of Cu(2-x)S Nanocrystal Plasmon Resonance through Reversible Photoinduced Electron Transfer.
    Alam R; Labine M; Karwacki CJ; Kamat PV
    ACS Nano; 2016 Feb; 10(2):2880-6. PubMed ID: 26853633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphology-Controlled Synthesis of Hybrid Nanocrystals via a Selenium-Mediated Strategy with Ligand Shielding Effect: The Case of Dual Plasmonic Au-Cu
    Zou Y; Sun C; Gong W; Yang X; Huang X; Yang T; Lu W; Jiang J
    ACS Nano; 2017 Apr; 11(4):3776-3785. PubMed ID: 28394555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Q-switching Yb
    Zhan Y; Wang Y; Long J; Zu J; Wang L; Wang C; Qu T; Liu Q
    Opt Lett; 2017 Jul; 42(13):2619-2622. PubMed ID: 28957299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrophilic Cu
    Li WL; Lie SQ; Du YQ; Wan XY; Wang TT; Wang J; Huang CZ
    J Mater Chem B; 2014 Oct; 2(40):7027-7033. PubMed ID: 32262113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Au-Cu
    Zhu D; Liu M; Liu X; Liu Y; Prasad PN; Swihart MT
    J Mater Chem B; 2017 Jul; 5(25):4934-4942. PubMed ID: 32264009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Size Dependence of Doping by a Vacancy Formation Reaction in Copper Sulfide Nanocrystals.
    Elimelech O; Liu J; Plonka AM; Frenkel AI; Banin U
    Angew Chem Int Ed Engl; 2017 Aug; 56(35):10335-10340. PubMed ID: 28639731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrophilic Cu9S5 nanocrystals: a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo.
    Tian Q; Jiang F; Zou R; Liu Q; Chen Z; Zhu M; Yang S; Wang J; Wang J; Hu J
    ACS Nano; 2011 Dec; 5(12):9761-71. PubMed ID: 22059851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmonic scattering imaging of single Cu
    Zou H; Gong L; Xu Y; Ni H; Jiang Y; Li Y; Huang C; Liu Q
    Talanta; 2023 Aug; 261():124663. PubMed ID: 37209587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Localized Surface Plasmon Resonance in Semiconductor Nanocrystals.
    Agrawal A; Cho SH; Zandi O; Ghosh S; Johns RW; Milliron DJ
    Chem Rev; 2018 Mar; 118(6):3121-3207. PubMed ID: 29400955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis, structural, and optical properties of stable ZnS:Cu,Cl nanocrystals.
    Corrado C; Jiang Y; Oba F; Kozina M; Bridges F; Zhang JZ
    J Phys Chem A; 2009 Apr; 113(16):3830-9. PubMed ID: 19170574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuning the localized surface plasmon resonance in Cu(2-x)Se nanocrystals by postsynthetic ligand exchange.
    Balitskii OA; Sytnyk M; Stangl J; Primetzhofer D; Groiss H; Heiss W
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17770-5. PubMed ID: 25233007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmonic Cu(2-x)S nanocrystals: optical and structural properties of copper-deficient copper(I) sulfides.
    Zhao Y; Pan H; Lou Y; Qiu X; Zhu J; Burda C
    J Am Chem Soc; 2009 Apr; 131(12):4253-61. PubMed ID: 19267472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analytical modeling of localized surface plasmon resonance in heterostructure copper sulfide nanocrystals.
    Caldwell AH; Ha DH; Ding X; Robinson RD
    J Chem Phys; 2014 Oct; 141(16):164125. PubMed ID: 25362290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.