These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 25065537)

  • 21. Nanoimprinted plasmonic nanocavity arrays.
    Kim S; Xuan Y; Drachev VP; Varghese LT; Fan L; Qi M; Webb KJ
    Opt Express; 2013 Jul; 21(13):15081-9. PubMed ID: 23842295
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Using nanoscale and mesoscale anisotropy to engineer the optical response of three-dimensional plasmonic metamaterials.
    Ross MB; Blaber MG; Schatz GC
    Nat Commun; 2014 Jun; 5():4090. PubMed ID: 24934374
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Magnetic modulation of surface plasmon modes in magnetoplasmonic metal-insulator-metal cavities.
    Ferreiro-Vila E; García-Martín JM; Cebollada A; Armelles G; González MU
    Opt Express; 2013 Feb; 21(4):4917-30. PubMed ID: 23482025
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Radiation rate enhancement in subwavelength plasmonic ring nanocavities.
    Lawrence N; Dal Negro L
    Nano Lett; 2013 Aug; 13(8):3709-15. PubMed ID: 23805860
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Plasmonic coupled-cavity system for enhancement of surface plasmon localization in plasmonic detectors.
    Ooi KJ; Bai P; Gu MX; Ang LK
    Nanotechnology; 2012 Jul; 23(27):275201. PubMed ID: 22706495
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanoscale plasmon waveguide including cavity resonator.
    Noual A; Pennec Y; Akjouj A; Djafari-Rouhani B; Dobrzynski L
    J Phys Condens Matter; 2009 Sep; 21(37):375301. PubMed ID: 21832343
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrical Dynamic Switching of Magnetic Plasmon Resonance Based on Selective Lithium Deposition.
    Jin Y; Liang J; Wu S; Zhang Y; Zhou L; Wang Q; Liu H; Zhu J
    Adv Mater; 2020 Oct; 32(42):e2000058. PubMed ID: 32930451
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Near-field-induced tunability of surface plasmon polaritons in composite metallic nanostructures.
    Christ A; Lévêque G; Martin OJ; Zentgraf T; Kuhl J; Bauer C; Giessen H; Tikhodeev SG
    J Microsc; 2008 Feb; 229(Pt 2):344-53. PubMed ID: 18304096
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SPP standing waves within plasmonic nanocavities.
    Yang DJ; Ding SJ; Ma L; Mu QX; Wang QQ
    Opt Express; 2022 Nov; 30(24):44055-44070. PubMed ID: 36523089
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photonic nanowires: from subwavelength waveguides to optical sensors.
    Guo X; Ying Y; Tong L
    Acc Chem Res; 2014 Feb; 47(2):656-66. PubMed ID: 24377258
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hybrid nanoparticle-nanoline plasmonic cavities as SERS substrates with gap-controlled enhancements and resonances.
    Sharma Y; Dhawan A
    Nanotechnology; 2014 Feb; 25(8):085202. PubMed ID: 24492249
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tiny surface plasmon resonance sensor integrated on silicon waveguide based on vertical coupling into finite metal-insulator-metal plasmonic waveguide.
    Lee DJ; Yim HD; Lee SG; O BH
    Opt Express; 2011 Oct; 19(21):19895-900. PubMed ID: 21996997
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Trapping light in plasmonic waveguides.
    Park J; Kim KY; Lee IM; Na H; Lee SY; Lee B
    Opt Express; 2010 Jan; 18(2):598-623. PubMed ID: 20173880
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improving the room-temperature confinement of light by miniaturizing mode sizes into a deep subwavelength scale using dielectric spheres in metal cavities.
    Liu K; Luo Z; Ye WM; Yuan XD; Zhu ZH; Zeng C
    Opt Lett; 2012 Oct; 37(19):4107-9. PubMed ID: 23027294
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhancement of transmission efficiency of nanoplasmonic wavelength demultiplexer based on channel drop filters and reflection nanocavities.
    Lu H; Liu X; Gong Y; Mao D; Wang L
    Opt Express; 2011 Jul; 19(14):12885-90. PubMed ID: 21747440
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A waveguide-typed plasmonic mode converter.
    Park HR; Park JM; Kim MS; Lee MH
    Opt Express; 2012 Aug; 20(17):18636-45. PubMed ID: 23038504
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Photoelectric energy conversion of plasmon-generated hot carriers in metal-insulator-semiconductor structures.
    García de Arquer FP; Mihi A; Kufer D; Konstantatos G
    ACS Nano; 2013 Apr; 7(4):3581-8. PubMed ID: 23495769
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spoof surface plasmon waveguide forces.
    Woolf D; Kats MA; Capasso F
    Opt Lett; 2014 Feb; 39(3):517-20. PubMed ID: 24487854
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recent advancements in optical DNA biosensors: exploiting the plasmonic effects of metal nanoparticles.
    Peng HI; Miller BL
    Analyst; 2011 Feb; 136(3):436-47. PubMed ID: 21049107
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A study on the mechanism for the interaction of light with noble metal-metal oxide semiconductor nanostructures for various photophysical applications.
    Kochuveedu ST; Jang YH; Kim DH
    Chem Soc Rev; 2013 Nov; 42(21):8467-93. PubMed ID: 23925494
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.