These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
679 related articles for article (PubMed ID: 25065607)
1. Redirection of metabolic flux for high levels of omega-7 monounsaturated fatty acid accumulation in camelina seeds. Nguyen HT; Park H; Koster KL; Cahoon RE; Nguyen HT; Shanklin J; Clemente TE; Cahoon EB Plant Biotechnol J; 2015 Jan; 13(1):38-50. PubMed ID: 25065607 [TBL] [Abstract][Full Text] [Related]
2. Toward production of jet fuel functionality in oilseeds: identification of FatB acyl-acyl carrier protein thioesterases and evaluation of combinatorial expression strategies in Camelina seeds. Kim HJ; Silva JE; Vu HS; Mockaitis K; Nam JW; Cahoon EB J Exp Bot; 2015 Jul; 66(14):4251-65. PubMed ID: 25969557 [TBL] [Abstract][Full Text] [Related]
3. Accumulation of medium-chain, saturated fatty acyl moieties in seed oils of transgenic Camelina sativa. Hu Z; Wu Q; Dalal J; Vasani N; Lopez HO; Sederoff HW; Qu R PLoS One; 2017; 12(2):e0172296. PubMed ID: 28212406 [TBL] [Abstract][Full Text] [Related]
4. A fatty acid condensing enzyme from Physaria fendleri increases hydroxy fatty acid accumulation in transgenic oilseeds of Camelina sativa. Snapp AR; Kang J; Qi X; Lu C Planta; 2014 Sep; 240(3):599-610. PubMed ID: 25023632 [TBL] [Abstract][Full Text] [Related]
5. Ectopic expression of cDNAs from larkspur (Consolida ajacis) for increased synthesis of gondoic acid (cis-11 eicosenoic acid) and its positional redistribution in seed triacylglycerol of Camelina sativa. Sarvas C; Puttick D; Forseille L; Cram D; Smith MA Planta; 2021 Jul; 254(2):32. PubMed ID: 34287699 [TBL] [Abstract][Full Text] [Related]
6. Expression of yeast acyl-CoA-∆9 desaturase leads to accumulation of unusual monounsaturated fatty acids in soybean seeds. Xue JA; Mao X; Yang ZR; Wu YM; Jia XY; Zhang L; Yue AQ; Wang JP; Li RZ Biotechnol Lett; 2013 Jun; 35(6):951-9. PubMed ID: 23397267 [TBL] [Abstract][Full Text] [Related]
7. What limits production of unusual monoenoic fatty acids in transgenic plants? Suh MC; Schultz DJ; Ohlrogge JB Planta; 2002 Aug; 215(4):584-95. PubMed ID: 12172841 [TBL] [Abstract][Full Text] [Related]
8. Camelina sativa: An ideal platform for the metabolic engineering and field production of industrial lipids. Bansal S; Durrett TP Biochimie; 2016 Jan; 120():9-16. PubMed ID: 26107412 [TBL] [Abstract][Full Text] [Related]
9. Acyl-ACP thioesterases from Camelina sativa: cloning, enzymatic characterization and implication in seed oil fatty acid composition. Rodríguez-Rodríguez MF; Salas JJ; Garcés R; Martínez-Force E Phytochemistry; 2014 Nov; 107():7-15. PubMed ID: 25212866 [TBL] [Abstract][Full Text] [Related]
10. Synthesis of oleyl oleate wax esters in Arabidopsis thaliana and Camelina sativa seed oil. Iven T; Hornung E; Heilmann M; Feussner I Plant Biotechnol J; 2016 Jan; 14(1):252-9. PubMed ID: 25912558 [TBL] [Abstract][Full Text] [Related]
11. Camelina seed transcriptome: a tool for meal and oil improvement and translational research. Nguyen HT; Silva JE; Podicheti R; Macrander J; Yang W; Nazarenus TJ; Nam JW; Jaworski JG; Lu C; Scheffler BE; Mockaitis K; Cahoon EB Plant Biotechnol J; 2013 Aug; 11(6):759-69. PubMed ID: 23551501 [TBL] [Abstract][Full Text] [Related]
12. A Specialized Diacylglycerol Acyltransferase Contributes to the Extreme Medium-Chain Fatty Acid Content of Iskandarov U; Silva JE; Kim HJ; Andersson M; Cahoon RE; Mockaitis K; Cahoon EB Plant Physiol; 2017 May; 174(1):97-109. PubMed ID: 28325847 [TBL] [Abstract][Full Text] [Related]
13. Genetic enhancement of palmitic acid accumulation in cotton seed oil through RNAi down-regulation of ghKAS2 encoding β-ketoacyl-ACP synthase II (KASII). Liu Q; Wu M; Zhang B; Shrestha P; Petrie J; Green AG; Singh SP Plant Biotechnol J; 2017 Jan; 15(1):132-143. PubMed ID: 27381745 [TBL] [Abstract][Full Text] [Related]
14. Identification of bottlenecks in the accumulation of cyclic fatty acids in camelina seed oil. Yu XH; Cahoon RE; Horn PJ; Shi H; Prakash RR; Cai Y; Hearney M; Chapman KD; Cahoon EB; Schwender J; Shanklin J Plant Biotechnol J; 2018 Apr; 16(4):926-938. PubMed ID: 28929610 [TBL] [Abstract][Full Text] [Related]
15. Engineering Camelina sativa (L.) Crantz for enhanced oil and seed yields by combining diacylglycerol acyltransferase1 and glycerol-3-phosphate dehydrogenase expression. Chhikara S; Abdullah HM; Akbari P; Schnell D; Dhankher OP Plant Biotechnol J; 2018 May; 16(5):1034-1045. PubMed ID: 28975735 [TBL] [Abstract][Full Text] [Related]
16. Increase in nervonic acid content in transformed yeast and transgenic plants by introduction of a Lunaria annua L. 3-ketoacyl-CoA synthase (KCS) gene. Guo Y; Mietkiewska E; Francis T; Katavic V; Brost JM; Giblin M; Barton DL; Taylor DC Plant Mol Biol; 2009 Mar; 69(5):565-75. PubMed ID: 19082744 [TBL] [Abstract][Full Text] [Related]
17. Production of C6-C14 Medium-Chain Fatty Acids in Seeds and Leaves via Overexpression of Single Hotdog-Fold Acyl-Lipid Thioesterases. Kalinger RS; Williams D; Ahmadi Pirshahid A; Pulsifer IP; Rowland O Lipids; 2021 May; 56(3):327-344. PubMed ID: 33547664 [TBL] [Abstract][Full Text] [Related]
18. Combinatorial Effects of Fatty Acid Elongase Enzymes on Nervonic Acid Production in Camelina sativa. Huai D; Zhang Y; Zhang C; Cahoon EB; Zhou Y PLoS One; 2015; 10(6):e0131755. PubMed ID: 26121034 [TBL] [Abstract][Full Text] [Related]
19. Expression of a Lychee Yu XH; Cai Y; Chai J; Schwender J; Shanklin J Plant Physiol; 2019 Jul; 180(3):1351-1361. PubMed ID: 31123096 [TBL] [Abstract][Full Text] [Related]
20. Tailoring the composition of novel wax esters in the seeds of transgenic Camelina sativa through systematic metabolic engineering. Ruiz-Lopez N; Broughton R; Usher S; Salas JJ; Haslam RP; Napier JA; Beaudoin F Plant Biotechnol J; 2017 Jul; 15(7):837-849. PubMed ID: 27990737 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]