These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

356 related articles for article (PubMed ID: 25065649)

  • 1. Injectable self-gelling composites for bone tissue engineering based on gellan gum hydrogel enriched with different bioglasses.
    Douglas TE; Piwowarczyk W; Pamula E; Liskova J; Schaubroeck D; Leeuwenburgh SC; Brackman G; Balcaen L; Detsch R; Declercq H; Cholewa-Kowalska K; Dokupil A; Cuijpers VM; Vanhaecke F; Cornelissen R; Coenye T; Boccaccini AR; Dubruel P
    Biomed Mater; 2014 Aug; 9(4):045014. PubMed ID: 25065649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-resolution synchrotron X-ray analysis of bioglass-enriched hydrogels.
    Gorodzha S; Douglas TE; Samal SK; Detsch R; Cholewa-Kowalska K; Braeckmans K; Boccaccini AR; Skirtach AG; Weinhardt V; Baumbach T; Surmeneva MA; Surmenev RA
    J Biomed Mater Res A; 2016 May; 104(5):1194-201. PubMed ID: 26749323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel injectable gellan gum hydrogel composites incorporating Zn- and Sr-enriched bioactive glass microparticles: High-resolution X-ray microcomputed tomography, antibacterial and in vitro testing.
    Douglas TEL; Dziadek M; Gorodzha S; Lišková J; Brackman G; Vanhoorne V; Vervaet C; Balcaen L; Del Rosario Florez Garcia M; Boccaccini AR; Weinhardt V; Baumbach T; Vanhaecke F; Coenye T; Bačáková L; Surmeneva MA; Surmenev RA; Cholewa-Kowalska K; Skirtach AG
    J Tissue Eng Regen Med; 2018 Jun; 12(6):1313-1326. PubMed ID: 29489058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymatic mineralization of gellan gum hydrogel for bone tissue-engineering applications and its enhancement by polydopamine.
    Douglas TE; Wlodarczyk M; Pamula E; Declercq HA; de Mulder EL; Bucko MM; Balcaen L; Vanhaecke F; Cornelissen R; Dubruel P; Jansen JA; Leeuwenburgh SC
    J Tissue Eng Regen Med; 2014 Nov; 8(11):906-18. PubMed ID: 23038649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enrichment of enzymatically mineralized gellan gum hydrogels with phlorotannin-rich Ecklonia cava extract Seanol(®) to endow antibacterial properties and promote mineralization.
    Douglas TE; Dokupil A; Reczyńska K; Brackman G; Krok-Borkowicz M; Keppler JK; Božič M; Van Der Voort P; Pietryga K; Samal SK; Balcaen L; van den Bulcke J; Van Acker J; Vanhaecke F; Schwarz K; Coenye T; Pamuła E
    Biomed Mater; 2016 Aug; 11(4):045015. PubMed ID: 27509486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Composites of gellan gum hydrogel enzymatically mineralized with calcium-zinc phosphate for bone regeneration with antibacterial activity.
    Douglas TEL; Pilarz M; Lopez-Heredia M; Brackman G; Schaubroeck D; Balcaen L; Bliznuk V; Dubruel P; Knabe-Ducheyne C; Vanhaecke F; Coenye T; Pamula E
    J Tissue Eng Regen Med; 2017 May; 11(5):1610-1618. PubMed ID: 26174042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ca:Mg:Zn:CO
    Douglas TEL; Sobczyk K; Łapa A; Włodarczyk K; Brackman G; Vidiasheva I; Reczyńska K; Pietryga K; Schaubroeck D; Bliznuk V; Voort PV; Declercq HA; Bulcke JVD; Samal SK; Khalenkow D; Parakhonskiy BV; Van Acker J; Coenye T; Lewandowska-Szumieł M; Pamuła E; Skirtach AG
    Biomed Mater; 2017 Mar; 12(2):025015. PubMed ID: 28223552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of composites for bone tissue-engineering applications consisting of gellan gum hydrogels mineralized with calcium and magnesium phosphate phases by enzymatic means.
    Douglas TE; Krawczyk G; Pamula E; Declercq HA; Schaubroeck D; Bucko MM; Balcaen L; Van Der Voort P; Bliznuk V; van den Vreken NM; Dash M; Detsch R; Boccaccini AR; Vanhaecke F; Cornelissen M; Dubruel P
    J Tissue Eng Regen Med; 2016 Nov; 10(11):938-954. PubMed ID: 24616374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel injectable, self-gelling hydrogel-microparticle composites for bone regeneration consisting of gellan gum and calcium and magnesium carbonate microparticles.
    Douglas TE; Łapa A; Reczyńska K; Krok-Borkowicz M; Pietryga K; Samal SK; Declercq HA; Schaubroeck D; Boone M; Van der Voort P; De Schamphelaere K; Stevens CV; Bliznuk V; Balcaen L; Parakhonskiy BV; Vanhaecke F; Cnudde V; Pamuła E; Skirtach AG
    Biomed Mater; 2016 Nov; 11(6):065011. PubMed ID: 27869102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication and characterization of sol-gel derived 45S5 Bioglass®-ceramic scaffolds.
    Chen QZ; Thouas GA
    Acta Biomater; 2011 Oct; 7(10):3616-26. PubMed ID: 21689791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanohydroxyapatite-reinforced chitosan composite hydrogel for bone tissue repair in vitro and in vivo.
    Dhivya S; Saravanan S; Sastry TP; Selvamurugan N
    J Nanobiotechnology; 2015 Jun; 13():40. PubMed ID: 26065678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sol-gel derived nanoscale bioactive glass (NBG) particles reinforced poly(ε-caprolactone) composites for bone tissue engineering.
    Lei B; Shin KH; Noh DY; Jo IH; Koh YH; Kim HE; Kim SE
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1102-8. PubMed ID: 23827548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication and in-vitro biocompatibility of freeze-dried CTS-nHA and CTS-nBG scaffolds for bone regeneration applications.
    Kumar P; Saini M; Dehiya BS; Umar A; Sindhu A; Mohammed H; Al-Hadeethi Y; Guo Z
    Int J Biol Macromol; 2020 Apr; 149():1-10. PubMed ID: 31923516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three dimensional printed bioglass/gelatin/alginate composite scaffolds with promoted mechanical strength, biomineralization, cell responses and osteogenesis.
    Ye Q; Zhang Y; Dai K; Chen X; Read HM; Zeng L; Hang F
    J Mater Sci Mater Med; 2020 Aug; 31(9):77. PubMed ID: 32816067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium-phosphate ceramics and polysaccharide-based hydrogel scaffolds combined with mesenchymal stem cell differently support bone repair in rats.
    Frasca S; Norol F; Le Visage C; Collombet JM; Letourneur D; Holy X; Sari Ali E
    J Mater Sci Mater Med; 2017 Feb; 28(2):35. PubMed ID: 28110459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymatic, urease-mediated mineralization of gellan gum hydrogel with calcium carbonate, magnesium-enriched calcium carbonate and magnesium carbonate for bone regeneration applications.
    Douglas TEL; Łapa A; Samal SK; Declercq HA; Schaubroeck D; Mendes AC; der Voort PV; Dokupil A; Plis A; De Schamphelaere K; Chronakis IS; Pamuła E; Skirtach AG
    J Tissue Eng Regen Med; 2017 Dec; 11(12):3556-3566. PubMed ID: 28569438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly flexible and degradable dual setting systems based on PEG-hydrogels and brushite cement.
    Rödel M; Teßmar J; Groll J; Gbureck U
    Acta Biomater; 2018 Oct; 79():182-201. PubMed ID: 30149213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gellan gum-based hydrogels for intervertebral disc tissue-engineering applications.
    Silva-Correia J; Oliveira JM; Caridade SG; Oliveira JT; Sousa RA; Mano JF; Reis RL
    J Tissue Eng Regen Med; 2011 Jun; 5(6):e97-107. PubMed ID: 21604382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sol-gel based synthesis and biological properties of zinc integrated nano bioglass ceramics for bone tissue regeneration.
    Paramita P; Ramachandran M; Narashiman S; Nagarajan S; Sukumar DK; Chung TW; Ambigapathi M
    J Mater Sci Mater Med; 2021 Jan; 32(1):5. PubMed ID: 33471255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gel-derived bioglass as a compound of hydroxyapatite composites.
    Cholewa-Kowalska K; Kokoszka J; Laczka M; Niedźwiedzki L; Madej W; Osyczka AM
    Biomed Mater; 2009 Oct; 4(5):055007. PubMed ID: 19779249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.