These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 25065739)
1. Crystal structures of type IIIH NAD-dependent D-3-phosphoglycerate dehydrogenase from two thermophiles. Kumar SM; Pampa KJ; Manjula M; Hemantha Kumar G; Kunishima N; Lokanath NK Biochem Biophys Res Commun; 2014 Aug; 451(1):126-30. PubMed ID: 25065739 [TBL] [Abstract][Full Text] [Related]
2. Molecular and functional characterization of D-3-phosphoglycerate dehydrogenase in the serine biosynthetic pathway of the hyperthermophilic archaeon Sulfolobus tokodaii. Shimizu Y; Sakuraba H; Doi K; Ohshima T Arch Biochem Biophys; 2008 Feb; 470(2):120-8. PubMed ID: 18054776 [TBL] [Abstract][Full Text] [Related]
3. Crystal structure of product-bound complex of UDP-N-acetyl-d-mannosamine dehydrogenase from Pyrococcus horikoshii OT3. Pampa KJ; Lokanath NK; Girish TU; Kunishima N; Rai VR Biochem Biophys Res Commun; 2014 Oct; 453(3):662-7. PubMed ID: 25305481 [TBL] [Abstract][Full Text] [Related]
4. Crystal structures and kinetics of Type III 3-phosphoglycerate dehydrogenase reveal catalysis by lysine. Singh RK; Raj I; Pujari R; Gourinath S FEBS J; 2014 Dec; 281(24):5498-512. PubMed ID: 25294608 [TBL] [Abstract][Full Text] [Related]
5. Regulation of Mycobacterium tuberculosis D-3-phosphoglycerate dehydrogenase by phosphate-modulated quaternary structure dynamics and a potential role for polyphosphate in enzyme regulation. Xu XL; Grant GA Biochemistry; 2014 Jul; 53(26):4239-49. PubMed ID: 24956108 [TBL] [Abstract][Full Text] [Related]
6. Crystal structure of a hyperthermophilic archaeal acylphosphatase from Pyrococcus horikoshii--structural insights into enzymatic catalysis, thermostability, and dimerization. Cheung YY; Lam SY; Chu WK; Allen MD; Bycroft M; Wong KB Biochemistry; 2005 Mar; 44(12):4601-11. PubMed ID: 15779887 [TBL] [Abstract][Full Text] [Related]
7. Identification of amino acid residues contributing to the mechanism of cooperativity in Escherichia coli D-3-phosphoglycerate dehydrogenase. Grant GA; Hu Z; Xu XL Biochemistry; 2005 Dec; 44(51):16844-52. PubMed ID: 16363798 [TBL] [Abstract][Full Text] [Related]
8. Comparison of Type 1 D-3-phosphoglycerate dehydrogenases reveals unique regulation in pathogenic Mycobacteria. Xu XL; Chen S; Salinas ND; Tolia NH; Grant GA Arch Biochem Biophys; 2015 Mar; 570():32-9. PubMed ID: 25698123 [TBL] [Abstract][Full Text] [Related]
9. Novel mutations in 3-phosphoglycerate dehydrogenase (PHGDH) are distributed throughout the protein and result in altered enzyme kinetics. Tabatabaie L; de Koning TJ; Geboers AJ; van den Berg IE; Berger R; Klomp LW Hum Mutat; 2009 May; 30(5):749-56. PubMed ID: 19235232 [TBL] [Abstract][Full Text] [Related]
10. Novel structure of an N-terminal domain that is crucial for the dimeric assembly and DNA-binding of an archaeal DNA polymerase D large subunit from Pyrococcus horikoshii. Matsui I; Urushibata Y; Shen Y; Matsui E; Yokoyama H FEBS Lett; 2011 Feb; 585(3):452-8. PubMed ID: 21192935 [TBL] [Abstract][Full Text] [Related]
11. Multiconformational states in phosphoglycerate dehydrogenase. Bell JK; Grant GA; Banaszak LJ Biochemistry; 2004 Mar; 43(12):3450-8. PubMed ID: 15035616 [TBL] [Abstract][Full Text] [Related]
12. Structure of archaeal glyoxylate reductase from Pyrococcus horikoshii OT3 complexed with nicotinamide adenine dinucleotide phosphate. Yoshikawa S; Arai R; Kinoshita Y; Uchikubo-Kamo T; Wakamatsu T; Akasaka R; Masui R; Terada T; Kuramitsu S; Shirouzu M; Yokoyama S Acta Crystallogr D Biol Crystallogr; 2007 Mar; 63(Pt 3):357-65. PubMed ID: 17327673 [TBL] [Abstract][Full Text] [Related]
13. Crystal structure of SAM-dependent methyltransferase from Pyrococcus horikoshii. Pampa KJ; Madan Kumar S; Hema MK; Kumara K; Naveen S; Kunishima N; Lokanath NK Acta Crystallogr F Struct Biol Commun; 2017 Dec; 73(Pt 12):706-712. PubMed ID: 29199993 [TBL] [Abstract][Full Text] [Related]
14. Determinants of substrate specificity in D-3-phosphoglycerate dehydrogenase. Conversion of the M. tuberculosis enzyme from one that does not use α-ketoglutarate as a substrate to one that does. Xu XL; Grant GA Arch Biochem Biophys; 2019 Aug; 671():218-224. PubMed ID: 31344342 [TBL] [Abstract][Full Text] [Related]
15. Structure of the catalytic nucleotide-binding subunit A of A-type ATP synthase from Pyrococcus horikoshii reveals a novel domain related to the peripheral stalk. Maegawa Y; Morita H; Iyaguchi D; Yao M; Watanabe N; Tanaka I Acta Crystallogr D Biol Crystallogr; 2006 May; 62(Pt 5):483-8. PubMed ID: 16627940 [TBL] [Abstract][Full Text] [Related]
16. Crystal structure of the ATPPase subunit and its substrate-dependent association with the GATase subunit: a novel regulatory mechanism for a two-subunit-type GMP synthetase from Pyrococcus horikoshii OT3. Maruoka S; Horita S; Lee WC; Nagata K; Tanokura M J Mol Biol; 2010 Jan; 395(2):417-29. PubMed ID: 19900465 [TBL] [Abstract][Full Text] [Related]
17. Vmax regulation through domain and subunit changes. The active form of phosphoglycerate dehydrogenase. Thompson JR; Bell JK; Bratt J; Grant GA; Banaszak LJ Biochemistry; 2005 Apr; 44(15):5763-73. PubMed ID: 15823035 [TBL] [Abstract][Full Text] [Related]