These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 2506586)
1. Photo-induced electron ejection from the reduced copper of Pseudomonas aeruginosa azurin. Corin AF; Gould IR Photochem Photobiol; 1989 Sep; 50(3):413-8. PubMed ID: 2506586 [TBL] [Abstract][Full Text] [Related]
2. Site-directed mutagenesis of azurin from Pseudomonas aeruginosa enhances the formation of an electron-transfer complex with a copper-containing nitrite reductase from Alcaligenes faecalis S-6. Kukimoto M; Nishiyama M; Tanokura M; Murphy ME; Adman ET; Horinouchi S FEBS Lett; 1996 Sep; 394(1):87-90. PubMed ID: 8925934 [TBL] [Abstract][Full Text] [Related]
3. The alkaline transition of blue copper proteins, Cucumis sativus plastocyanin and Pseudomonas aeruginosa azurin. Sakurai T FEBS Lett; 2006 Mar; 580(7):1729-32. PubMed ID: 16500649 [TBL] [Abstract][Full Text] [Related]
4. Modification of the electron-transfer sites of Pseudomonas aeruginosa azurin by site-directed mutagenesis. Pascher T; Bergström J; Malmström BG; Vänngård T; Lundberg LG FEBS Lett; 1989 Dec; 258(2):266-8. PubMed ID: 2557238 [TBL] [Abstract][Full Text] [Related]
5. Complex formation between the copper protein, azurin and the cytochrome c peroxidase of Pseudomonas aeruginosa. Brittain T; Greenwood C J Inorg Biochem; 1992 Oct; 48(1):71-7. PubMed ID: 1326600 [TBL] [Abstract][Full Text] [Related]
6. Role of ligand substitution on long-range electron transfer in azurins. Farver O; Jeuken LJ; Canters GW; Pecht I Eur J Biochem; 2000 Jun; 267(11):3123-9. PubMed ID: 10824096 [TBL] [Abstract][Full Text] [Related]
7. Ionic strength and pH effects on the rates of reduction of blue copper proteins by Fe(EDTA)2- comparison of the reactivities of Pseudomonas aeruginosa azurin and bean plastocyanin with various redox agents. Rosenberg RC; Wherland S; Holwerda RA; Gray HB J Am Chem Soc; 1976 Sep; 98(20):6364-9. PubMed ID: 9439 [No Abstract] [Full Text] [Related]
8. Electron tunneling in rhenium-modified Pseudomonas aeruginosa azurins. Miller JE; Di Bilio AJ; Wehbi WA; Green MT; Museth AK; Richards JR; Winkler JR; Gray HB Biochim Biophys Acta; 2004 Apr; 1655(1-3):59-63. PubMed ID: 15100017 [TBL] [Abstract][Full Text] [Related]
9. Kinetics of copper incorporation into a biosynthetic purple Cu(A) azurin: characterization of red, blue, and a new intermediate species. Wilson TD; Savelieff MG; Nilges MJ; Marshall NM; Lu Y J Am Chem Soc; 2011 Dec; 133(51):20778-92. PubMed ID: 21985501 [TBL] [Abstract][Full Text] [Related]
10. EPR of azurins from Pseudomonas aeruginosa and Alcaligenes denitrificans demonstrates pH-dependence of the copper-site geometry in Pseudomonas aeruginosa protein. Groeneveld CM; Aasa R; Reinhammar B; Canters GW J Inorg Biochem; 1987 Oct; 31(2):143-54. PubMed ID: 2828541 [TBL] [Abstract][Full Text] [Related]
11. The effect of driving force on intramolecular electron transfer in proteins. Studies on single-site mutated azurins. Farver O; Skov LK; van de Kamp M; Canters GW; Pecht I Eur J Biochem; 1992 Dec; 210(2):399-403. PubMed ID: 1459124 [TBL] [Abstract][Full Text] [Related]
12. Enhanced rate of intramolecular electron transfer in an engineered purple CuA azurin. Farver O; Lu Y; Ang MC; Pecht I Proc Natl Acad Sci U S A; 1999 Feb; 96(3):899-902. PubMed ID: 9927665 [TBL] [Abstract][Full Text] [Related]
13. Electron transfer between azurin from Alcaligenes faecalis and cytochrome c551 from Pseudomonas aeruginosa. Rosen P; Segal M; Pecht I Eur J Biochem; 1981 Nov; 120(2):339-44. PubMed ID: 6274637 [TBL] [Abstract][Full Text] [Related]
14. Conformational equilibria accompanying the electron transfer between cytochrome c (P551) and azurin from Pseudomonas aeruginosa. Rosen P; Pecht I Biochemistry; 1976 Feb; 15(4):775-86. PubMed ID: 174718 [TBL] [Abstract][Full Text] [Related]
15. The pH and redox-state dependence of the copper site in azurin from Pseudomonas aeruginosa as studied by EXAFS. Groeneveld CM; Feiters MC; Hasnain SS; van Rijn J; Reedijk J; Canters GW Biochim Biophys Acta; 1986 Sep; 873(2):214-27. PubMed ID: 3092861 [TBL] [Abstract][Full Text] [Related]
16. Electron transfer reactions of copper proteins. Holwerda RA; Wherland S; Gray HB Annu Rev Biophys Bioeng; 1976; 5():363-96. PubMed ID: 821386 [No Abstract] [Full Text] [Related]
17. Studies of individual carbon sites of azurin from Pseudomonas aeruginosa by natural-abundance carbon-13 nuclear magnetic resonance spectroscopy. Ugurbil K; Norton RS; Allerhand A; Bersohn R Biochemistry; 1977 Mar; 16(5):886-94. PubMed ID: 14666 [TBL] [Abstract][Full Text] [Related]
18. NMR study of structure and electron transfer mechanism of Pseudomonas aeruginosa azurin. Groeneveld CM; Canters GW J Biol Chem; 1988 Jan; 263(1):167-73. PubMed ID: 3121606 [TBL] [Abstract][Full Text] [Related]
19. The copper coordination group in "blue" copper proteins: evidence from resonance Raman spectra. Miskowski V; Tang SP; Spiro TG; Shapiro E; Moss TH Biochemistry; 1975 Mar; 14(6):1244-50. PubMed ID: 804316 [TBL] [Abstract][Full Text] [Related]
20. Site saturation of the histidine-46 position in Pseudomonas aeruginosa azurin: characterization of the His46Asp copper and cobalt proteins. Germanas JP; Di Bilio AJ; Gray HB; Richards JH Biochemistry; 1993 Aug; 32(30):7698-702. PubMed ID: 8394112 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]