These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 25066408)

  • 61. BOLD quantified renal pO2 is sensitive to pharmacological challenges in rats.
    Thacker J; Zhang JL; Franklin T; Prasad P
    Magn Reson Med; 2017 Jul; 78(1):297-302. PubMed ID: 27501515
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Optimization of saturation-recovery dynamic contrast-enhanced MRI acquisition protocol: monte carlo simulation approach demonstrated with gadolinium MR renography.
    Zhang JL; Conlin CC; Carlston K; Xie L; Kim D; Morrell G; Morton K; Lee VS
    NMR Biomed; 2016 Jul; 29(7):969-77. PubMed ID: 27200499
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Use of 3D DCE-MRI for the estimation of renal perfusion and glomerular filtration rate: an intrasubject comparison of FLASH and KWIC with a comprehensive framework for evaluation.
    Eikefjord E; Andersen E; Hodneland E; Zöllner F; Lundervold A; Svarstad E; Rørvik J
    AJR Am J Roentgenol; 2015 Mar; 204(3):W273-81. PubMed ID: 25714312
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Time-resolved TOF MR angiography in mice using a prospective 3D radial double golden angle approach.
    Trotier AJ; Lefrançois W; Ribot EJ; Thiaudiere E; Franconi JM; Miraux S
    Magn Reson Med; 2015 Mar; 73(3):984-94. PubMed ID: 24616047
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Magnetic resonance nephrourographic techniques and applications: how we do it.
    Kalb B; Votaw JR; Sharma P; Salman K; Ghafourian P; Martin DR
    Top Magn Reson Imaging; 2009 Apr; 20(2):59-69. PubMed ID: 20010060
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Inter-study reproducibility of arterial spin labelling magnetic resonance imaging for measurement of renal perfusion in healthy volunteers at 3 Tesla.
    Gillis KA; McComb C; Foster JE; Taylor AH; Patel RK; Morris ST; Jardine AG; Schneider MP; Roditi GH; Delles C; Mark PB
    BMC Nephrol; 2014 Jan; 15():23. PubMed ID: 24484613
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Characterization of carotid plaques on 3-dimensional ultrasound imaging by registration with multicontrast magnetic resonance imaging.
    Chiu B; Shamdasani V; Entrekin R; Yuan C; Kerwin WS
    J Ultrasound Med; 2012 Oct; 31(10):1567-80. PubMed ID: 23011620
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Dynamic contrast-enhanced magnetic resonance imaging measurement of renal function in patients undergoing partial nephrectomy: preliminary experience.
    Kang SK; Huang WC; Wong S; Zhang JL; Stifelman MD; Bruno MT; Babb JS; Lee VS; Chandarana H
    Invest Radiol; 2013 Oct; 48(10):687-92. PubMed ID: 23669587
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Quantitative assessment of rat kidney function by measuring the clearance of the contrast agent Gd(DOTA) using dynamic MRI.
    Baumann D; Rudin M
    Magn Reson Imaging; 2000 Jun; 18(5):587-95. PubMed ID: 10913720
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Rapid dynamic contrast-enhanced MRI for small animals at 7T using 3D ultra-short echo time and golden-angle radial sparse parallel MRI.
    Zhang J; Feng L; Otazo R; Kim SG
    Magn Reson Med; 2019 Jan; 81(1):140-152. PubMed ID: 30058079
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A fast black-blood sequence for four-dimensional cardiac manganese-enhanced MRI in mouse.
    Lefrançois W; Miraux S; Calmettes G; Pourtau L; Franconi JM; Diolez P; Thiaudière E
    NMR Biomed; 2011 Apr; 24(3):291-8. PubMed ID: 20925127
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Modified dixon-based renal dynamic contrast-enhanced MRI facilitates automated registration and perfusion analysis.
    de Boer A; Leiner T; Vink EE; Blankestijn PJ; van den Berg CAT
    Magn Reson Med; 2018 Jul; 80(1):66-76. PubMed ID: 29134673
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Evaluation of intrarenal oxygenation in mice by BOLD MRI on a 3.0T human whole-body scanner.
    Li LP; Ji L; Lindsay S; Prasad PV
    J Magn Reson Imaging; 2007 Mar; 25(3):635-8. PubMed ID: 17279536
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Simultaneous measurement of kidney function by dynamic contrast enhanced MRI and FITC-sinistrin clearance in rats at 3 tesla: initial results.
    Zöllner FG; Schock-Kusch D; Bäcker S; Neudecker S; Gretz N; Schad LR
    PLoS One; 2013; 8(11):e79992. PubMed ID: 24260332
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Four-dimensional magnetic resonance imaging (4D-MRI) using image-based respiratory surrogate: a feasibility study.
    Cai J; Chang Z; Wang Z; Paul Segars W; Yin FF
    Med Phys; 2011 Dec; 38(12):6384-94. PubMed ID: 22149822
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Susceptibility tensor imaging of the kidney and its microstructural underpinnings.
    Xie L; Dibb R; Cofer GP; Li W; Nicholls PJ; Johnson GA; Liu C
    Magn Reson Med; 2015 Mar; 73(3):1270-81. PubMed ID: 24700637
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Magnetic resonance histology of age-related nephropathy in the Sprague Dawley rat.
    Xie L; Cianciolo RE; Hulette B; Lee HW; Qi Y; Cofer G; Johnson GA
    Toxicol Pathol; 2012 Jul; 40(5):764-78. PubMed ID: 22504322
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Prior shape level set segmentation on multistep generated probability maps of MR datasets for fully automatic kidney parenchyma volumetry.
    Gloger O; Tönies KD; Liebscher V; Kugelmann B; Laqua R; Völzke H
    IEEE Trans Med Imaging; 2012 Feb; 31(2):312-25. PubMed ID: 21937343
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Measurement of renal volume using respiratory-gated MRI in subjects without known kidney disease: intraobserver, interobserver, and interstudy reproducibility.
    Di Leo G; Di Terlizzi F; Flor N; Morganti A; Sardanelli F
    Eur J Radiol; 2011 Dec; 80(3):e212-6. PubMed ID: 20951519
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Predicting infant cortical surface development using a 4D varifold-based learning framework and local topography-based shape morphing.
    Rekik I; Li G; Lin W; Shen D
    Med Image Anal; 2016 Feb; 28():1-12. PubMed ID: 26619188
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.