These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 25066493)

  • 1. Molecular dynamics of the structural changes of helical peptides induced by pressure.
    Mori Y; Okumura H
    Proteins; 2014 Nov; 82(11):2970-81. PubMed ID: 25066493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pressure-Induced Helical Structure of a Peptide Studied by Simulated Tempering Molecular Dynamics Simulations.
    Mori Y; Okumura H
    J Phys Chem Lett; 2013 Jun; 4(12):2079-83. PubMed ID: 26283256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Examination of the folding of a short alanine-based helical peptide with salt bridges using molecular dynamics simulation.
    Wang WZ; Lin T; Sun YC
    J Phys Chem B; 2007 Apr; 111(13):3508-14. PubMed ID: 17388513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics simulation of folding of a short helical peptide with many charged residues.
    Wei CC; Ho MH; Wang WH; Sun YC
    J Phys Chem B; 2005 Oct; 109(42):19980-6. PubMed ID: 16853583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protonation/deprotonation effects on the stability of the Trp-cage miniprotein.
    Jimenez-Cruz CA; Makhatadze GI; Garcia AE
    Phys Chem Chem Phys; 2011 Oct; 13(38):17056-63. PubMed ID: 21773639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of isothermal-isobaric replica-permutation method for molecular dynamics and Monte Carlo simulations and its application to reveal temperature and pressure dependence of folded, misfolded, and unfolded states of chignolin.
    Yamauchi M; Okumura H
    J Chem Phys; 2017 Nov; 147(18):184107. PubMed ID: 29141431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular mechanism for stabilizing a short helical peptide studied by generalized-ensemble simulations with explicit solvent.
    Sugita Y; Okamoto Y
    Biophys J; 2005 May; 88(5):3180-90. PubMed ID: 15749777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational changes of ubiquitin under high pressure conditions: A pressure simulated tempering molecular dynamics study.
    Mori Y; Okamoto Y
    J Comput Chem; 2017 Jun; 38(15):1167-1173. PubMed ID: 28437009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane binding and structure of de novo designed alpha-helical cationic coiled-coil-forming peptides.
    Vagt T; Zschörnig O; Huster D; Koksch B
    Chemphyschem; 2006 Jun; 7(6):1361-71. PubMed ID: 16680794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational study of the stability of the miniprotein trp-cage, the GB1 β-hairpin, and the AK16 peptide, under negative pressure.
    Hatch HW; Stillinger FH; Debenedetti PG
    J Phys Chem B; 2014 Jul; 118(28):7761-9. PubMed ID: 24559466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane adsorption, folding, insertion and translocation of synthetic trans-membrane peptides.
    Ulmschneider MB; Ulmschneider JP
    Mol Membr Biol; 2008 Apr; 25(3):245-57. PubMed ID: 18428040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NMR and CD spectroscopy show that imino acid restriction of the unfolded state leads to efficient folding.
    Xu Y; Hyde T; Wang X; Bhate M; Brodsky B; Baum J
    Biochemistry; 2003 Jul; 42(29):8696-703. PubMed ID: 12873129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational preferences of a short Aib/Ala-based water-soluble peptide as a function of temperature.
    Banerjee R; Chattopadhyay S; Basu G
    Proteins; 2009 Jul; 76(1):184-200. PubMed ID: 19137603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and thermodynamics characters of isolated α-syn12 peptide: long-time temperature replica-exchange molecular dynamics in aqueous solution.
    Cao Z; Liu L; Wu P; Wang J
    Acta Biochim Biophys Sin (Shanghai); 2011 Mar; 43(3):172-80. PubMed ID: 21289072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparative study of two different force fields on structural and thermodynamics character of H1 peptide via molecular dynamics simulations.
    Cao Z; Wang J
    J Biomol Struct Dyn; 2010 Apr; 27(5):651-61. PubMed ID: 20085382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The alpha-helical propensity of the cytoplasmic domain of phospholamban: a molecular dynamics simulation of the effect of phosphorylation and mutation.
    Paterlini MG; Thomas DD
    Biophys J; 2005 May; 88(5):3243-51. PubMed ID: 15764655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulated-tempering replica-exchange method for the multidimensional version.
    Mitsutake A
    J Chem Phys; 2009 Sep; 131(9):094105. PubMed ID: 19739847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamics simulations of small peptides: dependence on dielectric model and pH.
    Daggett V; Kollman PA; Kuntz ID
    Biopolymers; 1991 Feb; 31(3):285-304. PubMed ID: 1868159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unfolding the conformational behavior of peptide dendrimers: insights from molecular dynamics simulations.
    Filipe LC; Machuqueiro M; Baptista AM
    J Am Chem Soc; 2011 Apr; 133(13):5042-52. PubMed ID: 21405018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studying pressure denaturation of a protein by molecular dynamics simulations.
    Sarupria S; Ghosh T; García AE; Garde S
    Proteins; 2010 May; 78(7):1641-51. PubMed ID: 20146357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.