These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
268 related articles for article (PubMed ID: 25066609)
1. Isolating, screening and applying chromium reducing bacteria to promote growth and yield of okra (Hibiscus esculentus L.) in chromium contaminated soils. Maqbool Z; Asghar HN; Shahzad T; Hussain S; Riaz M; Ali S; Arif MS; Maqsood M Ecotoxicol Environ Saf; 2015 Apr; 114():343-9. PubMed ID: 25066609 [TBL] [Abstract][Full Text] [Related]
2. Comparative growth analysis of okra (Abelmoschus esculentus) in the presence of PGPR and press mud in chromium contaminated soil. Mushtaq Z; Asghar HN; Zahir ZA Chemosphere; 2021 Jan; 262():127865. PubMed ID: 32791369 [TBL] [Abstract][Full Text] [Related]
3. Isolation and characterization of chromium(VI)-reducing bacteria from tannery effluents and solid wastes. Kabir MM; Fakhruddin ANM; Chowdhury MAZ; Pramanik MK; Fardous Z World J Microbiol Biotechnol; 2018 Aug; 34(9):126. PubMed ID: 30083836 [TBL] [Abstract][Full Text] [Related]
4. Cr (VI) remediation by indigenous bacteria in soils contaminated by chromium-containing slag. Chai L; Huang S; Yang Z; Peng B; Huang Y; Chen Y J Hazard Mater; 2009 Aug; 167(1-3):516-22. PubMed ID: 19246154 [TBL] [Abstract][Full Text] [Related]
5. Isolation of hexavalent chromium-reducing anaerobes from hexavalent-chromium-contaminated and noncontaminated environments. Turick CE; Apel WA; Carmiol NS Appl Microbiol Biotechnol; 1996 Jan; 44(5):683-8. PubMed ID: 8703437 [TBL] [Abstract][Full Text] [Related]
6. Hexavalent chromium reduction by Bacillus sp. strain FM1 isolated from heavy-metal contaminated soil. Masood F; Malik A Bull Environ Contam Toxicol; 2011 Jan; 86(1):114-9. PubMed ID: 21181113 [TBL] [Abstract][Full Text] [Related]
7. Chromate reduction by chromium-resistant bacteria isolated from soils contaminated with dichromate. Camargo FA; Bento FM; Okeke BC; Frankenberger WT J Environ Qual; 2003; 32(4):1228-33. PubMed ID: 12931876 [TBL] [Abstract][Full Text] [Related]
8. IAA production by Bacillus sp. JH 2-2 promotes Indian mustard growth in the presence of hexavalent chromium. Shim J; Kim JW; Shea PJ; Oh BT J Basic Microbiol; 2015 May; 55(5):652-8. PubMed ID: 25283159 [TBL] [Abstract][Full Text] [Related]
9. Characterization of Cr(VI)-resistant bacteria isolated from chromium-contaminated soil by tannery activity. Viti C; Pace A; Giovannetti L Curr Microbiol; 2003 Jan; 46(1):1-5. PubMed ID: 12432455 [TBL] [Abstract][Full Text] [Related]
10. Impact of plant-associated bacteria biosensors on plant growth in the presence of hexavalent chromium. Francisco R; Branco R; Schwab S; Baldani JI; Morais PV World J Microbiol Biotechnol; 2017 Dec; 34(1):12. PubMed ID: 29256050 [TBL] [Abstract][Full Text] [Related]
11. Toxicity of hexavalent chromium and its reduction by bacteria isolated from soil contaminated with tannery waste. Megharaj M; Avudainayagam S; Naidu R Curr Microbiol; 2003 Jul; 47(1):51-4. PubMed ID: 12783193 [TBL] [Abstract][Full Text] [Related]
12. Vertical distribution of microbial communities in chromium-contaminated soil and isolation of Cr(Ⅵ)-Reducing strains. Liu B; Su G; Yang Y; Yao Y; Huang Y; Hu L; Zhong H; He Z Ecotoxicol Environ Saf; 2019 Sep; 180():242-251. PubMed ID: 31100590 [TBL] [Abstract][Full Text] [Related]
13. Hexavalent chromium-reducing plant growth-promoting rhizobacteria are utilized to bio-fortify trivalent chromium in fenugreek by promoting plant development and decreasing the toxicity of hexavalent chromium in the soil. Soni SK; Kumar G; Bajpai A; Singh R; Bajapi Y; Laxmi ; Tiwari S J Trace Elem Med Biol; 2023 Mar; 76():127116. PubMed ID: 36481602 [TBL] [Abstract][Full Text] [Related]
14. Pretreatment of Cr(VI)-amended soil with chromate-reducing rhizobacteria decreases plant toxicity and increases the yield of Pisum sativum. Soni SK; Singh R; Singh M; Awasthi A; Wasnik K; Kalra A Arch Environ Contam Toxicol; 2014 May; 66(4):616-27. PubMed ID: 24535090 [TBL] [Abstract][Full Text] [Related]
16. Isolation and characterization of a chromium-resistant bacterium Serratia sp. Cr-10 from a chromate-contaminated site. Zhang K; Li F Appl Microbiol Biotechnol; 2011 May; 90(3):1163-9. PubMed ID: 21318365 [TBL] [Abstract][Full Text] [Related]
17. Improvement of rice plant productivity by native Cr(VI) reducing and plant growth promoting soil bacteria Enterobacter cloacae. Pattnaik S; Dash D; Mohapatra S; Pattnaik M; Marandi AK; Das S; Samantaray DP Chemosphere; 2020 Feb; 240():124895. PubMed ID: 31550588 [TBL] [Abstract][Full Text] [Related]
18. Amelioration of chromium and heat stresses in Sorghum bicolor by Cr Bruno LB; Karthik C; Ma Y; Kadirvelu K; Freitas H; Rajkumar M Chemosphere; 2020 Apr; 244():125521. PubMed ID: 31812764 [TBL] [Abstract][Full Text] [Related]
19. The influence of biochar and black carbon on reduction and bioavailability of chromate in soils. Choppala GK; Bolan NS; Megharaj M; Chen Z; Naidu R J Environ Qual; 2012; 41(4):1175-84. PubMed ID: 22751060 [TBL] [Abstract][Full Text] [Related]
20. Phytotoxicity and phytoaccumulation of trivalent and hexavalent chromium in brake fern. Su Y; Han FX; Sridhar BB; Monts DL Environ Toxicol Chem; 2005 Aug; 24(8):2019-26. PubMed ID: 16152975 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]