BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 25066901)

  • 21. [pH-dependent regulation of electron transport in chloroplasts. Computer simulation investigation].
    Kuvykin IV; Vershubskiĭ AV; Priklonskiĭ VI; Tikhonov AN
    Biofizika; 2009; 54(4):647-59. PubMed ID: 19795786
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photoactive films of photosystem I on transparent reduced graphene oxide electrodes.
    Darby E; LeBlanc G; Gizzie EA; Winter KM; Jennings GK; Cliffel DE
    Langmuir; 2014 Jul; 30(29):8990-4. PubMed ID: 25029217
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Porous translucent electrodes enhance current generation from photosynthetic biofilms.
    Wenzel T; Härtter D; Bombelli P; Howe CJ; Steiner U
    Nat Commun; 2018 Apr; 9(1):1299. PubMed ID: 29610519
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Species dependence of the redox potential of the primary electron donor p700 in photosystem I of oxygenic photosynthetic organisms revealed by spectroelectrochemistry.
    Nakamura A; Suzawa T; Kato Y; Watanabe T
    Plant Cell Physiol; 2011 May; 52(5):815-23. PubMed ID: 21429906
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gymnosperms have increased capacity for electron leakage to oxygen (Mehler and PTOX reactions) in photosynthesis compared with angiosperms.
    Shirao M; Kuroki S; Kaneko K; Kinjo Y; Tsuyama M; Förster B; Takahashi S; Badger MR
    Plant Cell Physiol; 2013 Jul; 54(7):1152-63. PubMed ID: 23624674
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Computer modeling of electron and proton transport in chloroplasts.
    Tikhonov AN; Vershubskii AV
    Biosystems; 2014 Jul; 121():1-21. PubMed ID: 24835748
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Electron spin resonance of electron transport in photosynthetic systems. IX. Temperature dependence of the kinetics of P700 redox transients in bean chloroplasts induced by flashes of different duration].
    Tikhonov AN; Khomutov GB; Ruuge EK
    Mol Biol (Mosk); 1980; 14(1):157-72. PubMed ID: 6262630
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chlororespiration and cyclic electron flow around PSI during photosynthesis and plant stress response.
    Rumeau D; Peltier G; Cournac L
    Plant Cell Environ; 2007 Sep; 30(9):1041-51. PubMed ID: 17661746
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bidirectional electron transfer in photosystem I: direct evidence from high-frequency time-resolved EPR spectroscopy.
    Poluektov OG; Paschenko SV; Utschig LM; Lakshmi KV; Thurnauer MC
    J Am Chem Soc; 2005 Aug; 127(34):11910-1. PubMed ID: 16117508
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bio-inorganic hybrid structures for direct electron transfer to photosystem I in photobioelectrodes.
    Morlock S; Subramanian SK; Zouni A; Lisdat F
    Biosens Bioelectron; 2022 Oct; 214():114495. PubMed ID: 35834976
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Light-induced charge separation between plastocyanin and the iron-sulfur clusters FA and FB in the complex of plastocyanin and photosystem I.
    Hippler M; Riedel A; Schröer U; Nitschke W; Haehnel W
    Arch Biochem Biophys; 1996 Jun; 330(2):414-8. PubMed ID: 8660673
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Light-induced alteration of low-temperature interprotein electron transfer between photosystem I and flavodoxin.
    Utschig LM; Tiede DM; Poluektov OG
    Biochemistry; 2010 Nov; 49(45):9682-4. PubMed ID: 20961074
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Unidirectional Photocurrent of Photosystem I on π-System-Modified Graphene Electrodes: Nanobionic Approaches for the Construction of Photobiohybrid Systems.
    Feifel SC; Lokstein H; Hejazi M; Zouni A; Lisdat F
    Langmuir; 2015 Sep; 31(38):10590-8. PubMed ID: 26348323
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hybrid artificial photosynthetic systems comprising semiconductors as light harvesters and biomimetic complexes as molecular cocatalysts.
    Wen F; Li C
    Acc Chem Res; 2013 Nov; 46(11):2355-64. PubMed ID: 23730891
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Function of tyrosine Z in water oxidation by photosystem II: electrostatical promotor instead of hydrogen abstractor.
    Ahlbrink R; Haumann M; Cherepanov D; Bögershausen O; Mulkidjanian A; Junge W
    Biochemistry; 1998 Jan; 37(4):1131-42. PubMed ID: 9454606
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect of the encapsulation of bacteria in redox phospholipid polymer hydrogels on electron transfer efficiency in living cell-based devices.
    Lin X; Nishio K; Konno T; Ishihara K
    Biomaterials; 2012 Nov; 33(33):8221-7. PubMed ID: 22938764
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spin selectivity in electron transfer in photosystem I.
    Carmeli I; Senthil Kumar K; Heifler O; Carmeli C; Naaman R
    Angew Chem Int Ed Engl; 2014 Aug; 53(34):8953-8. PubMed ID: 24989350
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Direct electrochemistry and electrocatalysis of hemoglobin entrapped in semi-interpenetrating polymer network hydrogel based on polyacrylamide and chitosan.
    Zeng X; Wei W; Li X; Zeng J; Wu L
    Bioelectrochemistry; 2007 Nov; 71(2):135-41. PubMed ID: 17398166
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electron flow to photosystem I from stromal reductants in vivo: the size of the pool of stromal reductants controls the rate of electron donation to both rapidly and slowly reducing photosystem I units.
    Bukhov N; Egorova E; Carpentier R
    Planta; 2002 Sep; 215(5):812-20. PubMed ID: 12244447
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Photosystem I reduction in diatoms: as complex as the green lineage systems but less efficient.
    Bernal-Bayard P; Molina-Heredia FP; Hervás M; Navarro JA
    Biochemistry; 2013 Dec; 52(48):8687-95. PubMed ID: 24180741
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.