BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 25067818)

  • 1. Local awakening: regional reorganizations of brain oscillations after sleep.
    Tsai PJ; Chen SC; Hsu CY; Wu CW; Wu YC; Hung CS; Yang AC; Liu PY; Biswal B; Lin CP
    Neuroimage; 2014 Nov; 102 Pt 2():894-903. PubMed ID: 25067818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hard to wake up? The cerebral correlates of sleep inertia assessed using combined behavioral, EEG and fMRI measures.
    Vallat R; Meunier D; Nicolas A; Ruby P
    Neuroimage; 2019 Jan; 184():266-278. PubMed ID: 30223060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Variations in connectivity in the sensorimotor and default-mode networks during the first nocturnal sleep cycle.
    Wu CW; Liu PY; Tsai PJ; Wu YC; Hung CS; Tsai YC; Cho KH; Biswal BB; Chen CJ; Lin CP
    Brain Connect; 2012; 2(4):177-90. PubMed ID: 22817652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large-scale brain functional modularity is reflected in slow electroencephalographic rhythms across the human non-rapid eye movement sleep cycle.
    Tagliazucchi E; von Wegner F; Morzelewski A; Brodbeck V; Borisov S; Jahnke K; Laufs H
    Neuroimage; 2013 Apr; 70():327-39. PubMed ID: 23313420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of the brain's default mode network from wakefulness to slow wave sleep.
    Sämann PG; Wehrle R; Hoehn D; Spoormaker VI; Peters H; Tully C; Holsboer F; Czisch M
    Cereb Cortex; 2011 Sep; 21(9):2082-93. PubMed ID: 21330468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EEG microstates of wakefulness and NREM sleep.
    Brodbeck V; Kuhn A; von Wegner F; Morzelewski A; Tagliazucchi E; Borisov S; Michel CM; Laufs H
    Neuroimage; 2012 Sep; 62(3):2129-39. PubMed ID: 22658975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sleep spindles and hippocampal functional connectivity in human NREM sleep.
    Andrade KC; Spoormaker VI; Dresler M; Wehrle R; Holsboer F; Sämann PG; Czisch M
    J Neurosci; 2011 Jul; 31(28):10331-9. PubMed ID: 21753010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brain connectivity is altered by extreme physical exercise during non-REM sleep and wakefulness: indications from EEG and fMRI studies.
    Menicucci D; Gentili C; Piarulli A; Laurino M; Pellegrini S; Mastorci F; Bedini R; Montanaro D; Sebastiani L; Gemignani A
    Arch Ital Biol; 2016 Dec; 154(4):103-117. PubMed ID: 28306130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brain activation and hypothalamic functional connectivity during human non-rapid eye movement sleep: an EEG/fMRI study.
    Kaufmann C; Wehrle R; Wetter TC; Holsboer F; Auer DP; Pollmächer T; Czisch M
    Brain; 2006 Mar; 129(Pt 3):655-67. PubMed ID: 16339798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward a complete taxonomy of resting state networks across wakefulness and sleep: an assessment of spatially distinct resting state networks using independent component analysis.
    Houldin E; Fang Z; Ray LB; Owen AM; Fogel SM
    Sleep; 2019 Mar; 42(3):. PubMed ID: 30476346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic functional connectivity states characterize NREM sleep and wakefulness.
    Zhou S; Zou G; Xu J; Su Z; Zhu H; Zou Q; Gao JH
    Hum Brain Mapp; 2019 Dec; 40(18):5256-5268. PubMed ID: 31444893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Small-world network organization of functional connectivity of EEG slow-wave activity during sleep.
    Ferri R; Rundo F; Bruni O; Terzano MG; Stam CJ
    Clin Neurophysiol; 2007 Feb; 118(2):449-56. PubMed ID: 17174148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EEG-vigilance and BOLD effect during simultaneous EEG/fMRI measurement.
    Olbrich S; Mulert C; Karch S; Trenner M; Leicht G; Pogarell O; Hegerl U
    Neuroimage; 2009 Apr; 45(2):319-32. PubMed ID: 19110062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low frequency BOLD fluctuations during resting wakefulness and light sleep: a simultaneous EEG-fMRI study.
    Horovitz SG; Fukunaga M; de Zwart JA; van Gelderen P; Fulton SC; Balkin TJ; Duyn JH
    Hum Brain Mapp; 2008 Jun; 29(6):671-82. PubMed ID: 17598166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Network-dependent modulation of brain activity during sleep.
    Watanabe T; Kan S; Koike T; Misaki M; Konishi S; Miyauchi S; Miyahsita Y; Masuda N
    Neuroimage; 2014 Sep; 98():1-10. PubMed ID: 24814208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional connectivity during rested wakefulness predicts vulnerability to sleep deprivation.
    Yeo BT; Tandi J; Chee MW
    Neuroimage; 2015 May; 111():147-58. PubMed ID: 25700949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in white matter functional networks during wakefulness and sleep.
    Yang Y; Wang S; Liu J; Zou G; Jiang J; Jiang B; Cao W; Zou Q
    Hum Brain Mapp; 2022 Oct; 43(14):4383-4396. PubMed ID: 35615855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electroencephalographic sleep inertia of the awakening brain.
    Marzano C; Ferrara M; Moroni F; De Gennaro L
    Neuroscience; 2011 Mar; 176():308-17. PubMed ID: 21167917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sound-induced perturbations of the brain network in non-REM sleep, and network oscillations in wake.
    Wu W; Sheth BR
    Psychophysiology; 2013 Mar; 50(3):274-86. PubMed ID: 23316945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional connectivity dynamics slow with descent from wakefulness to sleep.
    El-Baba M; Lewis DJ; Fang Z; Owen AM; Fogel SM; Morton JB
    PLoS One; 2019; 14(12):e0224669. PubMed ID: 31790422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.