These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 2506811)
1. Synthesis of poly-3-hydroxyalkanoates is a common feature of fluorescent pseudomonads. Huisman GW; de Leeuw O; Eggink G; Witholt B Appl Environ Microbiol; 1989 Aug; 55(8):1949-54. PubMed ID: 2506811 [TBL] [Abstract][Full Text] [Related]
2. Formation of polyesters consisting of medium-chain-length 3-hydroxyalkanoic acids from gluconate by Pseudomonas aeruginosa and other fluorescent pseudomonads. Timm A; Steinbüchel A Appl Environ Microbiol; 1990 Nov; 56(11):3360-7. PubMed ID: 2125185 [TBL] [Abstract][Full Text] [Related]
3. Taxonomic implications of synthesis of poly-beta-hydroxybutyrate and other poly-beta-hydroxyalkanoates by aerobic pseudomonads. Kessler B; Palleroni NJ Int J Syst Evol Microbiol; 2000 Mar; 50 Pt 2():711-713. PubMed ID: 10758879 [TBL] [Abstract][Full Text] [Related]
4. The synthesis of short- and medium-chain-length poly(hydroxyalkanoate) mixtures from glucose- or alkanoic acid-grown Pseudomonas oleovorans. Ashby RD; Solaiman DK; Foglia TA J Ind Microbiol Biotechnol; 2002 Mar; 28(3):147-53. PubMed ID: 12074088 [TBL] [Abstract][Full Text] [Related]
6. Effect of nitrogen limitation on long-side-chain poly-beta-hydroxyalkanoate synthesis by Pseudomonas resinovorans. Ramsay BA; Saracovan I; Ramsay JA; Marchessault RH Appl Environ Microbiol; 1992 Feb; 58(2):744-6. PubMed ID: 1610198 [TBL] [Abstract][Full Text] [Related]
7. Accumulation of poly(3-hydroxybutyrate) from octanoate in different pseudomonas belonging to the rRNA homology group I. Diard S; Carlier JP; Ageron E; Grimont PA; Langlois V; Guérin P; Bouvet OM Syst Appl Microbiol; 2002 Aug; 25(2):183-8. PubMed ID: 12353870 [TBL] [Abstract][Full Text] [Related]
8. Cloning, characterization and comparison of the Pseudomonas mendocina polyhydroxyalkanoate synthases Phac1 and PhaC2. Hein S; Paletta JR; Steinbüchel A Appl Microbiol Biotechnol; 2002 Feb; 58(2):229-36. PubMed ID: 11878309 [TBL] [Abstract][Full Text] [Related]
9. Metabolism of poly(3-hydroxyalkanoates) (PHAs) by Pseudomonas oleovorans. Identification and sequences of genes and function of the encoded proteins in the synthesis and degradation of PHA. Huisman GW; Wonink E; Meima R; Kazemier B; Terpstra P; Witholt B J Biol Chem; 1991 Feb; 266(4):2191-8. PubMed ID: 1989978 [TBL] [Abstract][Full Text] [Related]
10. Formation of novel poly(hydroxyalkanoates) from long-chain fatty acids. Eggink G; de Waard P; Huijberts GN Can J Microbiol; 1995; 41 Suppl 1():14-21. PubMed ID: 7606658 [TBL] [Abstract][Full Text] [Related]
11. Direct biosynthesis of poly(3-hydroxyalkanoates) bearing epoxide groups. Imamura T; Kenmoku T; Honma T; Kobayashi S; Yano T Int J Biol Macromol; 2001 Dec; 29(4-5):295-301. PubMed ID: 11718827 [TBL] [Abstract][Full Text] [Related]
12. A lower specificity PhaC2 synthase from Pseudomonas stutzeri catalyses the production of copolyesters consisting of short-chain-length and medium-chain-length 3-hydroxyalkanoates. Chen JY; Song G; Chen GQ Antonie Van Leeuwenhoek; 2006 Jan; 89(1):157-67. PubMed ID: 16496091 [TBL] [Abstract][Full Text] [Related]
13. Role of fatty acid de novo biosynthesis in polyhydroxyalkanoic acid (PHA) and rhamnolipid synthesis by pseudomonads: establishment of the transacylase (PhaG)-mediated pathway for PHA biosynthesis in Escherichia coli. Rehm BH; Mitsky TA; Steinbüchel A Appl Environ Microbiol; 2001 Jul; 67(7):3102-9. PubMed ID: 11425728 [TBL] [Abstract][Full Text] [Related]
14. Poly(ethylene glycol)-mediated molar mass control of short-chain- and medium-chain-length poly(hydroxyalkanoates) from Pseudomonas oleovorans. Ashby RD; Solaiman DK; Foglia TA Appl Microbiol Biotechnol; 2002 Oct; 60(1-2):154-9. PubMed ID: 12382057 [TBL] [Abstract][Full Text] [Related]
15. The role of the fatty acid beta-oxidation multienzyme complex from Pseudomonas oleovorans in polyhydroxyalkanoate biosynthesis: molecular characterization of the fadBA operon from P. oleovorans and of the enoyl-CoA hydratase genes phaJ from P. oleovorans and Pseudomonas putida. Fiedler S; Steinbüchel A; Rehm BH Arch Microbiol; 2002 Aug; 178(2):149-60. PubMed ID: 12115060 [TBL] [Abstract][Full Text] [Related]
16. Synthesis and characterization of poly(3-hydroxyalkanoates) from Brassica carinata oil with high content of erucic acid and from very long chain fatty acids. Impallomeni G; Ballistreri A; Carnemolla GM; Guglielmino SP; Nicolò MS; Cambria MG Int J Biol Macromol; 2011 Jan; 48(1):137-45. PubMed ID: 21035502 [TBL] [Abstract][Full Text] [Related]
17. Biosynthesis and structural characterization of medium-chain-length poly(3-hydroxyalkanoates) produced by Pseudomonas aeruginosa from fatty acids. Ballistreri A; Giuffrida M; Guglielmino SP; Carnazza S; Ferreri A; Impallomeni G Int J Biol Macromol; 2001 Aug; 29(2):107-14. PubMed ID: 11518582 [TBL] [Abstract][Full Text] [Related]
18. Formation of Polyesters by Pseudomonas oleovorans: Effect of Substrates on Formation and Composition of Poly-(R)-3-Hydroxyalkanoates and Poly-(R)-3-Hydroxyalkenoates. Lageveen RG; Huisman GW; Preusting H; Ketelaar P; Eggink G; Witholt B Appl Environ Microbiol; 1988 Dec; 54(12):2924-32. PubMed ID: 16347790 [TBL] [Abstract][Full Text] [Related]
19. Secondary metabolites of the fluorescent pseudomonads. Leisinger T; Margraff R Microbiol Rev; 1979 Sep; 43(3):422-42. PubMed ID: 120492 [No Abstract] [Full Text] [Related]
20. Microbial synthesis of poly(3-hydroxyalkanoates) by Pseudomonas aeruginosa from fatty acids: identification of higher monomer units and structural characterization. Barbuzzi T; Giuffrida M; Impallomeni G; Carnazza S; Ferreri A; Guglielmino SP; Ballistreri A Biomacromolecules; 2004; 5(6):2469-78. PubMed ID: 15530065 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]