These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 25068176)

  • 21. High molar extinction coefficient heteroleptic ruthenium complexes for thin film dye-sensitized solar cells.
    Kuang D; Ito S; Wenger B; Klein C; Moser JE; Humphry-Baker R; Zakeeruddin SM; Grätzel M
    J Am Chem Soc; 2006 Mar; 128(12):4146-54. PubMed ID: 16551124
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells.
    Boschloo G; Hagfeldt A
    Acc Chem Res; 2009 Nov; 42(11):1819-26. PubMed ID: 19845388
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Activation energy of electron transport in dye-sensitized TiO2 solar cells.
    Boschloo G; Hagfeldt A
    J Phys Chem B; 2005 Jun; 109(24):12093-8. PubMed ID: 16852492
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Heterogeneous electron transfer from dye-sensitized nanocrystalline TiO2 to [Co(bpy)3]3+: insights gained from impedance spectroscopy.
    Liu Y; Jennings JR; Zakeeruddin SM; Grätzel M; Wang Q
    J Am Chem Soc; 2013 Mar; 135(10):3939-52. PubMed ID: 23425317
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Graphene frameworks promoted electron transport in quantum dot-sensitized solar cells.
    Zhu Y; Meng X; Cui H; Jia S; Dong J; Zheng J; Zhao J; Wang Z; Li L; Zhang L; Zhu Z
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):13833-40. PubMed ID: 25075630
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells.
    Gao F; Wang Y; Shi D; Zhang J; Wang M; Jing X; Humphry-Baker R; Wang P; Zakeeruddin SM; Grätzel M
    J Am Chem Soc; 2008 Aug; 130(32):10720-8. PubMed ID: 18642907
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhanced dye-sensitized solar cell photocurrent and efficiency using a Y-shaped, pyrazine-containing heteroaromatic sensitizer linkage.
    Watson BL; Sherman BD; Moore AL; Moore TA; Gust D
    Phys Chem Chem Phys; 2015 Jun; 17(24):15788-96. PubMed ID: 26017587
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cyclometalated ruthenium sensitizers bearing a triphenylamino group for p-type NiO dye-sensitized solar cells.
    Ji Z; Natu G; Wu Y
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8641-8. PubMed ID: 23927567
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Visible photoelectrochemical water splitting into H2 and O2 in a dye-sensitized photoelectrosynthesis cell.
    Alibabaei L; Sherman BD; Norris MR; Brennaman MK; Meyer TJ
    Proc Natl Acad Sci U S A; 2015 May; 112(19):5899-902. PubMed ID: 25918426
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photoassisted overall water splitting in a visible light-absorbing dye-sensitized photoelectrochemical cell.
    Youngblood WJ; Lee SH; Kobayashi Y; Hernandez-Pagan EA; Hoertz PG; Moore TA; Moore AL; Gust D; Mallouk TE
    J Am Chem Soc; 2009 Jan; 131(3):926-7. PubMed ID: 19119815
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electron transport analysis for improvement of solid-state dye-sensitized solar cells using poly(3,4-ethylenedioxythiophene) as hole conductors.
    Fukuri N; Masaki N; Kitamura T; Wada Y; Yanagida S
    J Phys Chem B; 2006 Dec; 110(50):25251-8. PubMed ID: 17165969
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular engineering of organic sensitizers for dye-sensitized solar cell applications.
    Hagberg DP; Yum JH; Lee H; De Angelis F; Marinado T; Karlsson KM; Humphry-Baker R; Sun L; Hagfeldt A; Grätzel M; Nazeeruddin MK
    J Am Chem Soc; 2008 May; 130(19):6259-66. PubMed ID: 18419124
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Avoiding diffusion limitations in cobalt(III/II)-tris(2,2'-bipyridine)-based dye-sensitized solar cells by tuning the mesoporous TiO2 film properties.
    Tsao HN; Comte P; Yi C; Grätzel M
    Chemphyschem; 2012 Aug; 13(12):2976-81. PubMed ID: 22855412
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of a coadsorbent on the performance of dye-sensitized TiO2 solar cells: shielding versus band-edge movement.
    Neale NR; Kopidakis N; van de Lagemaat J; Grätzel M; Frank AJ
    J Phys Chem B; 2005 Dec; 109(49):23183-9. PubMed ID: 16375281
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Solvent effects on interfacial electron transfer from Ru(4,4'-dicarboxylic acid-2,2'-bipyridine)2(NCS)2 to nanoparticulate TiO2: spectroscopy and solar photoconversion.
    Pollard JA; Zhang D; Downing JA; Knorr FJ; McHale JL
    J Phys Chem A; 2005 Dec; 109(50):11443-52. PubMed ID: 16354034
    [TBL] [Abstract][Full Text] [Related]  

  • 36. TiO2 surface modification and characterization with nanosized PbS in dye-sensitized solar cells.
    Wang P; Wang L; Ma B; Li B; Qiu Y
    J Phys Chem B; 2006 Jul; 110(29):14406-9. PubMed ID: 16854149
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Charge collection and pore filling in solid-state dye-sensitized solar cells.
    Snaith HJ; Humphry-Baker R; Chen P; Cesar I; Zakeeruddin SM; Grätzel M
    Nanotechnology; 2008 Oct; 19(42):424003. PubMed ID: 21832663
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Factors influencing the photoelectrochemical device performance sensitized by ruthenium polypyridyl dyes.
    Purnama I; Salmahaminati ; Abe M; Hada M; Kubo Y; Mulyana JY
    Dalton Trans; 2019 Jan; 48(2):688-695. PubMed ID: 30547166
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Observation of diffusion and tunneling recombination of dye-photoinjected electrons in ultrathin TiO2 layers by surface photovoltage transients.
    Mora-Seró I; Dittrich T; Belaidi A; Garcia-Belmonte G; Bisquert J
    J Phys Chem B; 2005 Aug; 109(31):14932-8. PubMed ID: 16852891
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient electron transfer and sensitizer regeneration in stable pi-extended tetrathiafulvalene-sensitized solar cells.
    Wenger S; Bouit PA; Chen Q; Teuscher J; Di Censo D; Humphry-Baker R; Moser JE; Delgado JL; Martín N; Zakeeruddin SM; Grätzel M
    J Am Chem Soc; 2010 Apr; 132(14):5164-9. PubMed ID: 20307069
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.