BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

352 related articles for article (PubMed ID: 25068499)

  • 41. Single strand targeted triplex-formation. Destabilization of guanine quadruplex structures by foldback triplex-forming oligonucleotides.
    Kandimalla ER; Agrawal S
    Nucleic Acids Res; 1995 Mar; 23(6):1068-74. PubMed ID: 7537368
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The Herpes Simplex Virus-1 genome contains multiple clusters of repeated G-quadruplex: Implications for the antiviral activity of a G-quadruplex ligand.
    Artusi S; Nadai M; Perrone R; Biasolo MA; Palù G; Flamand L; Calistri A; Richter SN
    Antiviral Res; 2015 Jun; 118():123-31. PubMed ID: 25843424
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Guanine-rich sequences inhibit proofreading DNA polymerases.
    Zhu XJ; Sun S; Xie B; Hu X; Zhang Z; Qiu M; Dai ZM
    Sci Rep; 2016 Jun; 6():28769. PubMed ID: 27349576
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Targeting G-quadruplex structure in the human c-Kit promoter with short PNA sequences.
    Amato J; Pagano B; Borbone N; Oliviero G; Gabelica V; Pauw ED; D'Errico S; Piccialli V; Varra M; Giancola C; Piccialli G; Mayol L
    Bioconjug Chem; 2011 Apr; 22(4):654-63. PubMed ID: 21410246
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Response of Sulfolobus solfataricus Dpo4 polymerase in vitro to a DNA G-quadruplex.
    Berroyer A; Alvarado G; Larson ED
    Mutagenesis; 2019 Sep; 34(3):289-297. PubMed ID: 31169295
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Crystallographic studies of quadruplex nucleic acids.
    Campbell NH; Parkinson GN
    Methods; 2007 Dec; 43(4):252-63. PubMed ID: 17967696
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Anti-HIV-1 activity of the G-quadruplex ligand BRACO-19.
    Perrone R; Butovskaya E; Daelemans D; Palù G; Pannecouque C; Richter SN
    J Antimicrob Chemother; 2014 Dec; 69(12):3248-58. PubMed ID: 25103489
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Extending recognition by peptide nucleic acids (PNAs): binding to duplex DNA and inhibition of transcription by tail-clamp PNA-peptide conjugates.
    Kaihatsu K; Shah RH; Zhao X; Corey DR
    Biochemistry; 2003 Dec; 42(47):13996-4003. PubMed ID: 14636068
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Short pyrimidine stretches containing mixed base PNAs are versatile tools to induce translation elongation arrest and truncated protein synthesis.
    Sénamaud-Beaufort C; Leforestier E; Saison-Behmoaras TE
    Oligonucleotides; 2003; 13(6):465-78. PubMed ID: 15025913
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Atomic Force Microscopy and Voltammetric Investigation of Quadruplex Formation between a Triazole-Acridine Conjugate and Guanine-Containing Repeat DNA Sequences.
    Chiorcea-Paquim AM; Pontinha AD; Eritja R; Lucarelli G; Sparapani S; Neidle S; Oliveira-Brett AM
    Anal Chem; 2015 Jun; 87(12):6141-9. PubMed ID: 25961908
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Stable G-Quadruplex Structures of Oncogene Promoters Induce Potassium-Dependent Stops of Thermostable DNA Polymerase.
    Chashchina GV; Beniaminov AD; Kaluzhny DN
    Biochemistry (Mosc); 2019 May; 84(5):562-569. PubMed ID: 31234770
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Specific stabilization of DNA G-quadruplex structures with a chemically modified complementary probe.
    Liu M; Liu Y; Wu F; Du Y; Zhou X
    Bioorg Med Chem; 2019 May; 27(10):1962-1965. PubMed ID: 30962113
    [TBL] [Abstract][Full Text] [Related]  

  • 53. G-quadruplexes as therapeutic targets.
    Neidle S; Read MA
    Biopolymers; 2000-2001; 56(3):195-208. PubMed ID: 11745111
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Responsive Fluorescent PNA Analogue as a Tool for Detecting G-quadruplex Motifs of Oncogenes and Activity of Toxic Ribosome-Inactivating Proteins.
    Sabale PM; Srivatsan SG
    Chembiochem; 2016 Sep; 17(17):1665-73. PubMed ID: 27271025
    [TBL] [Abstract][Full Text] [Related]  

  • 55. QGRS Mapper: a web-based server for predicting G-quadruplexes in nucleotide sequences.
    Kikin O; D'Antonio L; Bagga PS
    Nucleic Acids Res; 2006 Jul; 34(Web Server issue):W676-82. PubMed ID: 16845096
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Interaction in vitro of type III intermediate filament proteins with higher order structures of single-stranded DNA, particularly with G-quadruplex DNA.
    Tolstonog GV; Li G; Shoeman RL; Traub P
    DNA Cell Biol; 2005 Feb; 24(2):85-110. PubMed ID: 15699629
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Strand displacement recognition of mixed adenine-cytosine sequences in double stranded DNA by thymine-guanine PNA (peptide nucleic acid).
    Nielsen PE; Egholm M
    Bioorg Med Chem; 2001 Sep; 9(9):2429-34. PubMed ID: 11553484
    [TBL] [Abstract][Full Text] [Related]  

  • 58. G-quadruplex formation in human telomeric (TTAGGG)4 sequence with complementary strand in close vicinity under molecularly crowded condition.
    Kan ZY; Lin Y; Wang F; Zhuang XY; Zhao Y; Pang DW; Hao YH; Tan Z
    Nucleic Acids Res; 2007; 35(11):3646-53. PubMed ID: 17488850
    [TBL] [Abstract][Full Text] [Related]  

  • 59. NMR-Based model of a telomerase-inhibiting compound bound to G-quadruplex DNA.
    Fedoroff OY; Salazar M; Han H; Chemeris VV; Kerwin SM; Hurley LH
    Biochemistry; 1998 Sep; 37(36):12367-74. PubMed ID: 9730808
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Computational procedures to explain the different biological activity of DNA/DNA, DNA/PNA and PNA/PNA hybrid molecules mimicking NF-kappaB binding sites.
    Saviano M; Romanelli A; Bucci E; Pedone C; Mischiati C; Bianchi N; Feriotto G; Borgatti M; Gambari R
    J Biomol Struct Dyn; 2000 Dec; 18(3):353-62. PubMed ID: 11149512
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.