These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 25068539)

  • 1. Macroporous microcarriers for introducing cells into a microfluidic chip.
    Bergström G; Nilsson K; Mandenius CF; Robinson ND
    Lab Chip; 2014 Sep; 14(18):3502-4. PubMed ID: 25068539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Establishment of a confluent cardiomyocyte culture in a cylindrical microchannel.
    Tanaka Y; Akaike H; Sugii Y; Kitamori T
    Anal Sci; 2011; 27(9):957-60. PubMed ID: 21908927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells.
    Jang KJ; Suh KY
    Lab Chip; 2010 Jan; 10(1):36-42. PubMed ID: 20024048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of physiologic mechanical stimulation on embryonic chick cardiomyocytes using a microfluidic cardiac cell culture model.
    Nguyen MD; Tinney JP; Ye F; Elnakib AA; Yuan F; El-Baz A; Sethu P; Keller BB; Giridharan GA
    Anal Chem; 2015 Feb; 87(4):2107-13. PubMed ID: 25539164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micro pumping with cardiomyocyte-polymer hybrid.
    Park J; Kim IC; Baek J; Cha M; Kim J; Park S; Lee J; Kim B
    Lab Chip; 2007 Oct; 7(10):1367-70. PubMed ID: 17896023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gelatin based microfluidic devices for cell culture.
    Paguirigan A; Beebe DJ
    Lab Chip; 2006 Mar; 6(3):407-13. PubMed ID: 16511624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ generation of tunable porosity gradients in hydrogel-based scaffolds for microfluidic cell culture.
    Al-Abboodi A; Tjeung R; Doran PM; Yeo LY; Friend J; Yik Chan PP
    Adv Healthc Mater; 2014 Oct; 3(10):1655-70. PubMed ID: 24711346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A microfluidic platform for 3-dimensional cell culture and cell-based assays.
    Kim MS; Yeon JH; Park JK
    Biomed Microdevices; 2007 Feb; 9(1):25-34. PubMed ID: 17103048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micro-perfusion for cardiac tissue engineering: development of a bench-top system for the culture of primary cardiac cells.
    Khait L; Hecker L; Radnoti D; Birla RK
    Ann Biomed Eng; 2008 May; 36(5):713-25. PubMed ID: 18274906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time and non-invasive impedimetric monitoring of cell proliferation and chemosensitivity in a perfusion 3D cell culture microfluidic chip.
    Lei KF; Wu MH; Hsu CW; Chen YD
    Biosens Bioelectron; 2014 Jan; 51():16-21. PubMed ID: 23920091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hepatogenic differentiation of mesenchymal stem cells using microfluidic chips.
    Ju X; Li D; Gao N; Shi Q; Hou H
    Biotechnol J; 2008 Mar; 3(3):383-91. PubMed ID: 18098120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a novel microfluidic device for long-term in situ monitoring of live cells in 3-dimensional matrices.
    Dånmark S; Gladnikoff M; Frisk T; Zelenina M; Mustafa K; Russom A; Finne-Wistrand A
    Biomed Microdevices; 2012 Oct; 14(5):885-93. PubMed ID: 22714394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimulation of isolated ventricular myocytes within an open architecture microarray.
    Klauke N; Smith GL; Cooper JM
    IEEE Trans Biomed Eng; 2005 Mar; 52(3):531-8. PubMed ID: 15759583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detachably assembled microfluidic device for perfusion culture and post-culture analysis of a spheroid array.
    Sakai Y; Hattori K; Yanagawa F; Sugiura S; Kanamori T; Nakazawa K
    Biotechnol J; 2014 Jul; 9(7):971-9. PubMed ID: 24802801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The culture and differentiation of amniotic stem cells using a microfluidic system.
    Wu HW; Lin XZ; Hwang SM; Lee GB
    Biomed Microdevices; 2009 Aug; 11(4):869-81. PubMed ID: 19370418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous microcarrier-based cell culture in a benchtop microfluidic bioreactor.
    Abeille F; Mittler F; Obeid P; Huet M; Kermarrec F; Dolega ME; Navarro F; Pouteau P; Icard B; Gidrol X; Agache V; Picollet-D'hahan N
    Lab Chip; 2014 Sep; 14(18):3510-8. PubMed ID: 25012393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidics/CMOS orthogonal capabilities for cell biology.
    Linder V; Koster S; Franks W; Kraus T; Verpoorte E; Heer F; Hierlemann A; de Rooij NF
    Biomed Microdevices; 2006 Jun; 8(2):159-66. PubMed ID: 16688575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ micropatterning technique by cell crushing for co-cultures inside microfluidic biochips.
    Leclerc E; El Kirat K; Griscom L
    Biomed Microdevices; 2008 Apr; 10(2):169-77. PubMed ID: 17849187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An integrated microfluidic culture device to regulate endothelial cell differentiation from embryonic stem cells.
    Lee JM; Kim JE; Kang E; Lee SH; Chung BG
    Electrophoresis; 2011 Nov; 32(22):3133-7. PubMed ID: 22102496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microtiter plate-sized standalone chip holder for microenvironmental physiological control in gas-impermeable microfluidic devices.
    Harink B; Le Gac S; Barata D; van Blitterswijk C; Habibovic P
    Lab Chip; 2014 Jun; 14(11):1816-20. PubMed ID: 24752761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.